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Abstract

A new algorithm is developed for large-scale, long-time molecular dynamics simulations of multiscale materials phe-
nomena by combining a hierarchy of subdynamics: (i) rigid-body cluster dynamics for global conformational changes;
(ii) implicit integration of Newton’s equations for the coalescence of the clusters; and (iii) normal-mode analysis of fast
atomic oscillations. Fuzzy clustering is used to facilitate the seamless integration of the multiple levels of abstraction. The
fuzzy-body/implicit-integration/normal-mode (FIN) scheme speeds up a simulation of nanocluster sintering by a factor of
28 over a conventional explicit integration scheme. A parallel implementation of the scheme achieves an efficiency of 0.94
for a 12.7 million-atom nanocrystalline solid on 64 nodes of an IBM SP2 computer. © 1997 Elsevier Science B.V.
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1. Introduction

A new concept is emerging in materials development. The “multiscale structure control” attains seemingly
contradictory properties (such as superior porosity and mechanical stability for catalytic applications) by
controlling structures extending over multiple length scales [1,2]. Fig. 1 shows a computer model [3] of
cluster-assembled ceramics [4,5]. Strength of such materials must be optimized with respect to atomic bonding
(at a length scale of 107! m), pore (10~ m) and interface (10~® m) morphologies, and the shape and
distribution of clusters (> 107 m).

Molecular dynamics (MD) [6] is a powerful tool for understanding how atomistic processes are related to
macroscopic phenomena. Recent developments in parallel processing technology and multiresolution numerical
algorithms [7] have established large-scale MD simulations as a new research mode for studying macroscopic
materials phenomena such as fracture [3,8-10]. However, many important processes (such as sintering and
sol-gel processes) are characterized by time scales that are many orders-of-magnitude larger than atomic time
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Fig. 1. MD configuration of nanocluster-assembled Si3N4. The system contains 108 clusters each consisting of 10052 atoras (in total
of 1085616 atoms). Small spheres represent Si or N atoms. The figure also illustrates schematically the domain decomposition scheme
used for parallel implementation. The walls represent partition boundaries to divide workloads. The arrows demonstrate the flow of atomic
information during message passing.

scales [11]. The required large system size and long simulated time are beyond the scope of current simulation
technologies.

Dynamic systems involving a wide range of time scales are called “stiff’ [12]. Stiff systems are ubiquitous
in many areas. An example is the conformational change of biomolecules [13]. In quantum chemistry, stiff
harmonic action arising from the kinetic energy of quantum particles (characteristic time ~ 10717 sec) is
inseparable from molecular motions on the time scale of 107!2 sec [14]. In mineralogical simulations, stiff
atomic motions in structural units (such as SiO4 tetrahedra) are coupled to slow rearrangement of these
units [15]. In astrophysics, the billion-year evolution of the solar system is affected by planet motions on the
time scale of a year {16].

Various approaches have been developed for long-time MD simulations of stiff systems. One approach
introduces constraints to freeze high-frequency modes. This enables the use of a larger time step, assuming that
the high-frequency modes are unimportant for global conformational changes [17,18]. In the subspace dynamics
approach [19], low-frequency modes are selected by diagonalizing the dynamical matrix of the system. Other
schemes use different time steps for different force components [20-22]. Ordinary differential equations can
be integrated using a large time step by implicit-integration schemes [23]. For example, the implicit Euler
integrator using time step A¢ is a low-pass filter which selects motions with eigenfrequencies less than 1/Az;
the frozen fast motions can be integrated separately by normal-mode analysis [13]. Recently, more accurate
implicit integrators have been proposed which are symplectic [23]. Symplectic integrators preserve the phase-
space volume, and this symplecticness is essential for the long-time stability of orbitals [24]. It is also possible
to take advantage of the geometry of a particular system to speed up MD simulations. For example, an O(N)
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algorithm has been developed for the constrained dynamics of linear-chain and tree-geometry molecules [25].
In addition, proper coordinate transformations often separate the degrees of freedom with different time scales
and thereby speed up numerical integrations [14-16].

Because of the wide range of length and time scales involved in multiscale materials phenomena, the above
long-time integrators alone are not sufficient for the simulation of these phenomena if they are used in the
context of a single physical model. In fact, new hybrid approaches are emerging which introduce multiple
levels of abstraction. For example, the quasi-continuum model uses direct atomistic calculations to provide
inputs to the finite element analysis of continuum mechanics [26]. Kinetic Monte Carlo simulations of long-
time semiconductor growth may be augmented by MD analysis of short-time local energy equilibration [27].
Merging multigrid methods with MD simulations has also been explored [28]. Efforts are underway to combine
MD with first-principles electronic structure calculations to describe the breaking and formation of chemical
bonds during macroscopic material processes [29,30].

In this paper, we develop a new long-time integrator for large-scale MD simulations of multiscale materials
phenomena. The new algorithm combines a hierarchy of subdynamics: (i) quaternion-based rigid-body cluster
dynamics [31] for global conformational changes; (ii) implicit integration of Newton’s equations [23] for
the coalescence of the clusters; and (iii) normal-mode analysis of fast atomic oscillations [13]. The greatest
challenge, however, is to integrate these heterogeneous abstraction levels into a seamless, unified scheme. To
facilitate such integration, we find it useful to introduce the concept of fuzzy clustering [32-37]. Fuzzy set
theory [38] uses a membership function to describe the uncertainty of belonging. We use the fuzzy membership
to define the clusters in the above hierarchical MD scheme.

The outline of this paper is as follows. Section 2 describes our fuzzy-body/implicit-integration/normal-model
(FIN) algorithm. Numerical tests on the new scheme is presented in Section 3, and Section 4 deals with its
implementation on parallel computers. Finally, Section 5 contains the summary.

2. Fuzzy-body/implicit-integration/normal-mode method

In this paper, sintering of nanometer-size clusters is simulated to test the new hierarchical MD scheme.
Sintering is a process of densification by heating [11]. This process is used to consolidate cluster-assembled
nanophase materials [3-5] such as shown in Fig. 1. The early stage of sintering involves three processes: (i)
the relative rotation of clusters [39,40]; (ii) the formation and growth of necks between clusters via surface
diffusion or viscous flow [11]; and (iii) local thermal motion of atoms which assists the first two processes
(see Fig. 2). Processes (i) and (ii) are characterized by time scales (> 10~ sec) which are much longer
than the characteristic time (~ 107! sec) of process (iii). A reliable long-time MD integrator must at least
capture these processes.

In MD simulations, a system is represented by a set of atomic coordinates, {x;|i = 1,..., N}, where N is
the number of atoms. Time evolution of the system is governed by Newton’s second law of motion [6],

2.
m S5 = g (D) (1)

where m; and g;({x;}) = —dV/dx; are the mass and force for the ith atom. The potential energy function
V({x;}) consists of a sum over atomic pairs and triples [41]. Given atomic coordinates x} at time ¢, = nAt
(n = integer), Eq. (1) is numerically integrated for Ar using a reference system r;, The reference system
represents two types of essential dynamics, i.e., relative rotation of clusters and fast atomic oscillations. The
reference system is thus defined as a superposition, r; = ro; + ry;, where ro; and ry; are the collective and
harmonic parts, respectively.

The collective part of the reference system represents the rigid-body motion of clusters, and it has 6M degrees
of freedom for the translational and rotational motion of M clusters (M < N). Equations of motion for the
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Slow Cluster Motion:
Quaternion-Based
Fuzzy-Body Dynamics

Unharmonic Motion at the Neck:
Implicit Integration

Fast Atomic Oscillation:
Normal-Mode Analysis

o

Fig. 2. Various physical processes involved in the sintering of nanoclusters. (i) Relative rotation of clusters is included by rigid-body
dynamics with fuzzy clustering; (ii) unharmonic atomic motions lead to surface diffusion and the growth of the neck between clusters, and
these motions are included by implicit integration of Newton’s equations; (iii) thermal atomic motions assist the above diffusion process,
and these high-frequency motions are dealt with normal-mode analysis.

clusters are

d’R
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dt ¢ (3)
where M., R., and L. are t.he mass, center-of-mass, and angular momentum of the cth cluster (¢ =1,..., M).
Here, g, = Y, P(i € c)g™"({ro;}) is the force acting on the cth cluster and T, = 3, P(i € c)mrg; X
gﬁ“‘e’({rgi}) is the torque. These quantities are computed from atomic forces g™ ({rp;}) = —Viner/dr0i

arising from the intercluster potential energy Viger. Only those atomic pairs and triples whose elements belong
to different clusters contribute to Viyer. The membership function P(i € ¢) describes the degree of association
between atom i and cluster ¢. Eqs. (2) and (3) are integrated for Ar using the quaternion formulation of
rigid-body dynamics in order to avoid the numerical singularity associated with angular coordinates [31].

We use fuzzy clustering [32-37] to merge the cluster dynamics seamlessly with the other dynamics. Fuzzy
clustering uses fuzzy membership functions [38] whose range is continuous, [0,1]. To determine the member-
ship function, we apply the principle of maximum entropy [34,35]. First a cost function E (i) is introduced
such that

E()=% Y P(eow(xi—x), (4)
J#i)
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where »;;(x) is the atomic pair potential used in the interatomic potential energy V [41]. The cost function
Ec(i) is the cost for assigning atom i to cluster ¢. The membership function is determined to maximize the
entropy, S; = — .. P(i € ¢)InP(i € c), subject to the constants (i) Y. P(i € ¢c) =1; and (ii) Y. Plie
c)E (i) = (E;) = constant. This constrained minimization problem is solved by introducing the Lagrange
multiplier 8 = 1/kpT, to give the solution

exp(—E (i) /kgT)

P(iec) = )
l M exp(—E.(i)/ksT)

(3)

Note that Eqs. (4) and (S) constitute an implicit equation system for P(i € ¢). This system is solved by
fixed-point iterations {34] concurrently with the MD simulation.

The harmonic part ry; of the reference system represents the fast oscillation of each atom around the local
potential minimum, and it is defined as the solution to the linear system

dzrh,-

e —H(ryi—x7), (6)

m;

where x} is the local potential minimum near x} and the Hessian matrix
2

Hy= 5%, V({x:}) (7)
is evaluated at x}. Eq. (6) describes independent harmonic motion of individual atoms, and it can be integrated
analytically in terms of trigonometric functions [13].

The residual system is defined as z; = x; — r;, and it satisfies

2, .
mi 2 = gz + 1)) — g™ ({ro}) + Hulrg = x7). ®)
The residual system is expected to vary slowly, since the rapidly oscillating harmonic motions have been
subtracted. Therefore, Eq. (8) is integrated by an implicit integration scheme using At which is much larger
than atomic time scales. One implicit integration scheme [23] has the same algorithmic structure as the
conventional velocity-Verlet integrator [6], except that the force g'*! is obtained by solving a nonlinear
equation system,

2
g:1+| _gi<{x‘{1+l + %gf‘“}) gmter({rgﬂ}) + H,,(r’”" x*) . (9)

This integration scheme is symplectic, and it is stable for an arbitrarily large Ar [23]. Solving Eq. (9) is
equivalent to the minimization of the dynamics function [13]

N 2
¢<{x.-})=2—m—"[x,-—x:'+‘ (g,({"',-“})— u<r"+‘—x:~*>] +V({xD . (10)

i=1

In the variational formulation, Eq. (10) is minimized with respect to {x;}. (We use the truncated Newton
method for this minimization [13].) The solution x} to the minimization problem is then used to compute the
self-consistent force, g "“ = (2m; /Atz)(x ;'“), which in turn is used to accelerate the velocity for the
residual system, z;.
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(b)

Fig. 3. (a) Starting MD configuration of two 20335-atom Si3Ny clusters. (b) The same system after 2 x 10~!! s. The FIN scheme is
used for the integration of MD equations.

3. Numerical experiments

The fuzzy-body/implicit-integration/normal-mode (FIN) scheme is applied to the simulation of two silicon
nitride (Si3Ns) nanoclusters each consisting of 20335 atoms. We compare four integration schemes for the
Newton’s equations:

(i) Explicit integration with the velocity Verlet scheme [6] using Az =2 x 1015 s.

(i1) Rigid-body (RB) cluster dynamics by freezing the other 3N—6M degrees of freedom (M = 2) completely.
In this scheme, crisp membership is used instead of the fuzzy membership, i.e., P(i € ¢) is a Boolean
function whose value is either O or 1.

(iii) The rigid-body/implicit-integration/normal-mode (RIN) scheme which is equivalent to the FIN scheme
except that the crisp membership is used for P(i € c).

(iv) The FIN scheme using the fuzzy membership function, Eq. (5).

In the RB, RIN, and FIN schemes, Af = 1072 s is used as a time step.

A reliable long-time integrator must first reproduce the long-time global motion of the clusters correctly.
Figs. 3a shows the starting configuration of the clusters, and Fig. 3b is the final configuration at time 2 x 10~10 s
obtained by the FIN integration scheme. The translational and rotational motions of the clusters in the FIN
scheme are indistinguishable from the results of the explicit integration scheme. The FIN scheme thus describes
the global motion of the clusters accurately. Significance of such rotation for the sintering of nanophase materials
has been emphasised by Tsuruta et al. [39].

Sintering progresses through the formation of a “neck™ between two clusters (see Fig. 2). Fig. 4a shows
a close-up of the neck region at 1.5 x 107! s in the FIN scheme. The membership value of each atom to
the top cluster (¢ = 1) is represented in gray scale; the brighter atoms have the larger values of P(i € 1). In
Fig. 4b, P(i € 1) for the atoms are plotted as a function of their z coordinates. The atoms at the neck region
are characterized by membership values which are intermediate between 0 and 1.
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Fig. 4. (a) A close-up of the neck region at 1.5 x 1070 s in the FIN scheme. The membership of an atom to the top cluster (¢ = 1) is
represented in gray scale; the brighter atom has the larger value of P(i € 1). (b) The membership function P(i € 1) for the atoms as a
function of their z coordinates.
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Fig. 5. Neck size between two SizNy4 clusters as a function of time. The circles, squares, and crosses represent the results with the FIN,
RIN, and RB schemes, respectively. They are compared with the result of the explicit integration scheme (solid curve).

Fig. 5 shows the time evolution of the neck size which is defined as the number of atomic pairs whose
elements belong to different clusters but are within a cut-off length (2 A). We note that the rigid-body
dynamics cannot describe the neck formation. In fact, the two clusters bounce back and become apart in this
scheme. Accordingly, the neck size in Fig. 5 becomes O after 1.0 x 10~!% s with the RB scheme. Both the
RIN and FIN schemes reproduce the sudden neck formation at 1.2 x 1070 s which is observed in the explicit-
integration scheme. However, the RIN scheme does not represent the step-functionlike increase in the neck size
correctly. Rather, the neck size overshoots and then decreases to almost 0. Fuzzy clustering enables the FIN
scheme to reproduce the sudden increase at 1.2 x 10710 sec, as well as the subsequent plateau in the neck size
until the end of the simulation at 2 x 107105
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Fig. 6. Intercluster potential energy, Viuer, Per atom as a function of time. The FIN, RIN, and RB schemes (represented by circles, squares,
and crosses) are compared with the result of the explicit integration scheme (solid curve).

Neck formation is also monitored by the intercluster potential energy Viner, as shown in Fig. 6. The FIN
scheme reproduces the long-time behavior of Vi, including the gradual decrease of Vi before 1.2 x 10710 sec
and the plateau after that. The RB scheme does not describe the lowering of Vi, by neck formation at all. The
RIN scheme reproduces the gradual decrease of Viyer well, but not the sudden drop of Vi, at 1.2 x 10710 5.

In summary, the FIN scheme successfully describes the essential long-time dynamics during sintering. First,
its rigid-body reference system r.; captures the global translational and rotational motion of clusters. Second, the
implicit integration of the residual system z; accurately describes the neck formation. Thermal atomic motion
represented by ry; assists the neck formation by adding random fluctuations to the initial configuration for the
implicit-integration step. Finally, the fuzzy clustering enables the description of sudden neck formation, which
is not captured with the hard clustering using crisp membership.

Simulation of a 40 670-atom Si3Ny4 system for 10719 sec in the FIN scheme takes 5.4 hrs on a single processor
Digital Alpha 2100/275 (clock cycle = 275 MHz). It takes 150 hrs to simulate the same system using the
standard velocity-Verlet integrator. The FIN scheme thus speeds up a conventional MD integration scheme by
a factor of 28. It is only possible by a hybrid computation scheme such as FIN to simulate multimillion-atom
systems for technologically important time scales.

4. Parallel implementation

The FIN algorithm is also implemented on distributed-memory parallel computers using a domain decompo-
sition scheme [7]. The physical system is divided into subdomains of equal volume according to the uniform
mesh topology, and each subdomain is assigned to a processor (see Fig. 1). The MPI (message passing inter-
face) standard [42,43] is used to implement the message passing for exchanging atomic information among
processors.

The execution time T(p, N) of the parallel FIN algorithm for an N-atom systems on p processors is written
as a sum of the computation and communication times: T(p, N) = Teomp (P, N) + Toomm (p, N). The computation
time is modeled as
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Teomp(ps N) = c1N/p + c2logy p (11)

where the first term represents the computation of the local subdomain in each processor. The second term is the
overhead for computing cluster properties globally. (An additional constant cost for performing the rigid-body
cluster dynamics is negligible). The communication time consists of two terms: (i) the message-passing cost
for performing global summation of cluster properties; (ii) the time required for copying the boundary-atom
information among processors,

Teomm(p, N) = c3log, p + ca(N/p)?>. (12)

The latter is necessary to compute interatomic potentials with a finite cut-off r.. This cost is proportional to the
number of “surface” atoms which are located within . from the partition boundaries.

We define the speed of the program as the number of atoms times the number of time steps calculated per
unit time. The speedup is the speed of the program on p processors divided by the single-processor speed. The
parallel efficiency E is the speedup for p processors divided by p [44,45]. If we use the memory-bounded
scaling [44,45] such that the problem size N is proportional to the number of processors p, we obtain

comp(1 N/P) CZ"’“ 3 -

TN I+ — Plogzp/NJr—(p/N)‘/3 . (13)

In Eq. (13), the term proportional to p log, p/N arises from the overhead for performing global summations.
The term proportional to the surface-to-volume ratio (p/N) 1/3 of each subdomain is due to the message-passing
of boundary atoms.

The performance of the parallel FIN algorithm is tested on the IBM SP2 computer at the Maui High
Performance Computing Center. The simulated system is aggregates of SizNy clusters each consisting of 49 728
atoms (cluster radius is 50 A). We use the memory-bounded scaling, N = 198912p (1 < p < 64, p is a
multiple of 2). The largest system contains 12730368 atoms on 64 processors. The processors are logically
arranged in a three-dimensional cube of size p; X p, X p, such that max(px, py,p;) < 2 X min(p,, py,p;)-
Fig. 7 shows the total execution time and the time spent for communication as a function of the number of
atoms N. The execution time is for integrating one FIN step (At = 1072 sec) involving one of Newton’s
iterations. The time increases only slightly as N increases, implying a nearly perfect parallel efficiency. In our
numerical experiments, the granularity, N/p ~ 2 x 10%, is large, and accordingly both of the overheads in
Eq. (13) are small.

Fig. 8 shows the parallel efficiency E and the communication overhead, Teomm(p, N) /T(p, N), as a function
of the number of processors p. For the largest system (12.7 million atoms on 64 processors), the parallel
efficiency E =0.94 and communication overhead is only 2% of the total execution time.

5. Summary

A new algorithm is developed for long-time MD simulations of cluster-assembled nanophase materials. The
algorithm combines: (i) rigid-body cluster dynamics; (ii) implicit integration of Newton’s equations; and
(iii) normal-mode analysis of fast atomic oscillations. Fuzzy clustering is used to integrate the multiple levels
of abstraction seamlessly. The new scheme using a time step of 107'? s speeds up a conventional explicit
integration scheme using a time step of 2 x 1015 sec by a factor of 28. A parallel implementation of the
scheme achieves an efficiency of 0.94 for a 12.7-million-atom Si3N4 nanocrystalline solid on 64 nodes of an
IBM SP2 computer.
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Fig. 7. Total execution time (circles) and the time spent for communication (squares) of the parallel FIN program on an IBM SP2
computer as a function of the number of atoms N. The system consists of a-Si3 N4 nanoclusters each containing 49724 atoms. The number
of atoms scales with the number of processors p as N = 198912p.
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Fig. 8. Parallel efficiency (circles) and communication overhead (squares) of the parallel FIN program on an IBM SP2 computer for the
same system as is shown in Fig. 7.
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