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ABSTRACT: We present a foundation model for exascale molecular dynamics
simulations by leveraging an E(3) equivariant network architecture (Allegro) and a
set of large-scale organic and inorganic materials data sets merged by the Total
Energy Alignment framework. The obtained model (Allegro-FM) is versatile for
various material simulations for diverse downstream tasks covering 89 elements in
the training sets. Allegro-FM exhibits excellent agreement with high-level quantum
chemistry theories in describing structural, mechanical, and thermodynamic
properties, while exhibiting emergent capabilities for structural correlations,
reaction kinetics, mechanical strengths, fracture, and solid/liquid dissolution, for
which the model has not been trained. Furthermore, we demonstrate the robust
predictability and generalizability of Allegro-FM for chemical reactions using Transition1x, which consists of tens of thousands of
organic reactions and 9.6 million configurations including transition state data, in addition to reactive simulations using calcium
silicate hydrates as a test bed. With its computationally efficient, strictly local network architecture, Allegro-FM scales up to
multibillion-atom systems with a parallel efficiency of 0.975 on the exaflop/s Aurora supercomputer at Argonne Leadership
Computing Facility. The approach presented in this work demonstrates the potential of the foundation model for novel materials
design and discovery based on large-scale atomistic simulations.

The foundation model (FM) is a paradigm shift in artificial
intelligence (AI)1 and has transformed our way of model

training. Unlike conventional approaches that use domain-
specific data sets to perform a well-targeted single task, FMs
are trained with massive data sets without a specific target
application in mind. A well-trained FM, also called pretrained
model, acquires the robustness and generalizability for out-of-
distribution tasks, enabling diverse downstream tasks by fine-
tuning with relatively small data sets. The concept of the FM
originates from large language models (LLMs), such as
OpenAI ChatGPT,2,3 Google Gemini,4 and Meta LLaMA.5

With the unprecedented success of LLMs, FM that is capable
of performing versatile tasks with multimodal input data has
gained traction in many research fields including materials and
chemical sciences.6,7

There are two key components for a successful FM
development, i.e., advanced model architecture and large-
scale data sets. Transformer network equipped with the
attention mechanism8 has been widely used in LLMs with
hundreds of billions of learnable parameters trained on
millions of tokens. Self-supervised learning is one of the
enabling technologies for such LLMs by eliminating the
laborious and expensive data labeling. Fine-tuning is a form of
transfer learning, in which a part of the network weights in the
pretrained model are adjusted by a separately prepared smaller
data set for specialized tasks.

FM has several significant advantages over conventional
models developed for a narrowly defined task. Although
generating an FM is extremely resource-intensive, a well-
trained FM may be fine-tuned with much fewer resources,
enabling even a user with a very modest computing resource to
incorporate the model in their workflow. Also, FMs are used as
a base model for versatile downstream tasks.1 As such, it is not
necessary to develop a new model from scratch for a different
downstream application, thereby reducing the total cost and
time investment.
Recently, great strides have been made in terms of both

model architecture and training data sets for materials
modeling and simulations. Many large-scale data sets such as
Materials Project,9,10 SPICE,11 ANI, Alexandria,12 OQMD,13

and AFLOW14 are publicly available. Modern architectures
take advantage of Graph Neural Network (GNN), multibody
expansion strategy, and the equivariant features from molecular
geometry (ACE,15 MACE,16 Nequip,17 Equiformer,18,19 Orb,20

and MatterGen21). The model expressibility has increased
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substantially along with the number of learnable parameters.
Current state-of-the-art (SOTA) models are based on
multimillion training parameters.22 While the emerging trend
of FMs for atomistic simulation is evident, this novel approach
poses scientific questions as well as research opportunities, for
example, can we develop computationally efficient machine-
learning force fields (MLFFs) for a broad set of materials
properties and processes?23 Also lacking to date is a scalable
FM that enables molecular dynamics (MD) simulations
involving multibillion atoms on exaflop/s parallel super-
computers.
In this study, we present Allegro-FM, a foundation model for

exascalable Molecular Dynamics (MD) simulations, employing
the linear-scaling and computationally efficient Allegro24

architecture trained on MPtrj9 and OFF23 data set25 aligned
with Total Energy Alignment (TEA) framework.26

Materials simulations often require a large number of atoms
to describe key features, such as dislocation, grain boundaries,
distinct phases, and phase boundaries. At the same time, the
model should accurately describe the chemical reactions.
Allegro achieves SOTA accuracy and speed based on E(3)
group-theoretical equivariance and local descriptors, while its
excellent stability for large-scale, long-time trajectories (or
fidelity scaling) can further be enhanced by sharpness-aware
training as in the Allegro-Legato model.27 Materials data sets
are often divided into two categories: organic molecules and
inorganic crystals. They are generated with different levels of
QM theories and functionals, making them incompatible
within single model training.26 TEA framework smoothly
connects the potential energy landscapes between distinct data
sets, eliminating the need for expensive data regenerations.
TEA achieves consistent data fusion encompassing multiple
computational methods through shift-scale (or affine) trans-
formation in a metamodel space,28 which in turn is rooted in
free-energy perturbation29 and multiscale quantum-mechanics/
molecular-mechanics (QM/MM) methods.30,31

With the SOTA scalability32 demonstrated on the
Perlmutter supercomputer at the National Energy Research
Scientific Computing Center (NERSC), Allegro has a great
potential for materials simulations that require million-to-
billion atoms.33−35 As a test bed, we apply Allegro-FM to a
tobermorite 11 Å (T11), a representative system of calcium
silicate hydrates and its aqueous reactions. Among silicate
materials, calcium silicates are important because of their
abundance in the Earth’s crust as well as being the primary

constituent in cement. Since many forms of calcium silicates
and their hydrates coexist in cementitious materials, the T11
crystal is often chosen as a representative structure. Aluminum-
substituted tobermorites are also found in ancient Roman
concrete and thought to be a key ingredient responsible for its
robustness and longevity.36,37

Recently, cement also attracted attention as a carbon-storage
material because of the ability to trap carbon by the
mineralization process.38 CO2 mineralization naturally occurs
as part of the geochemical cycle,39 and the mechanism has
been extensively studied over the years. A mechanistic
understanding of CO2 mineralization is crucial for ensuring
safe and long-term carbon storage without gas leakage.40

Although the carbonation of silicates is detrimental to cement
through the loss of mechanical strength and eventual fracture, a
recent study presented alternative binder materials to mitigate
the issue.41

First-principles Quantum MD (QMD)42,43 simulations
provide atomistic-level insights that complement experimental
observations. Density Functional Theory (DFT)44,45 has been
routinely used to access a wide range of materials properties
although the high computational cost and suboptimal
algorithmic scalability prohibits performing simulations span-
ning a sufficiently long time and large scale to study rich
chemistry in cementitious materials. CLAYFF,46,47 a widely
used empirical force field (FF), has been developed for
multicomponent minerals and their hydrates. Because of the
computational efficiency, CLAYFF allows incorporating
complex geometries of minerals and their fluid interfaces. As
an empirical FF, however, CLAYFF also suffers from a poor
description of chemical reactions and limited transferability.
Here, a scalable FM is promising to describe both quantum-
mechanically accurate materials properties and chemical
reactions for spatially nonhomogeneous systems.
First, we have examined the structural and mechanical

properties of the T11 crystal shown in Figure 1a. The T11
structure consists of layers of calcium ions and a covalently
bonded Si−O network containing H2O molecules. Figure 1b
presents the equation of state of T11 using Allegro-FM. The
obtained mass density at 2.44 g/cm3 agrees well with an
experimental value of 2.46 g/cm3.48 Using the Birch−
Murnaghan equation of state, the bulk modulus is estimated
at 60 GPa by Allegro-FM, which reasonably compares to the
bulk modulus of 52.7−60.8 GPa using first-principles and
empirical FF calculations.49−51

Figure 1. (a) Snapshot of the tobermorite 11 Å (T11) structure. Green, khaki, red, and blue spheres represent Ca, Si, O, and H atoms, respectively.
(b) Equation of state of T11 using Allegro-FM. The dotted-line shows an experimental density of T11 at 2.46 g/cm3.48
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Figure 2a−j shows the pair distribution function g(r) and the
coordination number N(r) of T11 crystal thermalized at
temperature of 300 K using QMD and Allegro-FM. Overall,
g(r) and N(r) curves using Allegro-FM and QMD agree well.
This result is somewhat expected because the thermal motion
of atoms at an ambient condition would not be much different
from the distribution in the training data set. Nonetheless, the
result also demonstrates the capability of Allegro-FM even
without fine-tuning to accurately describe not only the static
crystal structure but also the thermal motion of atoms at
moderate temperature.
Accurate description of chemical reactions, whether an

MLFF can describe bond breaking and formation events, is a
great challenge because training data sets are generated near
ground states in general. Also, it is not realistic to create a
database that contains all necessary information on chemical
reactions for a target application, such as the multistep
reactions in cement chemistry or geochemical cycles. It is
basically a zero-shot learning task that requires out-of-
distribution generalizability from the training set. Here, we
have examined the predictability of chemical reactions by
Allegro-FM using the decomposition of carbonic acid into
H2O and CO2 molecules as a representative chemical reaction
(Figure 3). With reaction coordinates obtained by Nudged
Elastic Band (NEB) calculation52 using the GGA-PBE
functional, we have evaluated its energy profile using Allegro-
FM, DFT with GGA-PBE, and ωB97M-D3(BJ) that is a

hybrid exact-exchange functional with dispersion correlation.
We present two distinct reaction pathways: (1) the conven-
tional pathway that is confined within a two-dimensional plane
(Figure 3a) and (2) another pathway involving the rotation of
the H2O molecule (Figure 3b).
First, Allegro-FM and ωB97M-D3(BJ) agree well with the

transition state (TS) energy. The result may be attributed to
the OFF23 data set that is generated with ωB97M-D3(BJ)
functional calculations for organic molecules. On the other
hand, GGA-PBE and Allegro-FM agree well on the energy of
initial and final states, which differs by about 5 kcal/mol using
ωB97M-D3(BJ). Overall Allegro-FM generalizes well to TS,
providing the activation energy of 45.7 kcal/mol, while 46.0
kcal/mol with ωB97M-D3(BJ), and 35.7 kcal/mol with GGA-
PBE for the conventional pathway, respectively. More
systematic analysis with the Transition1x53 data set is also
provided in the Supporting Information (see Figure S1 and
Table S1).
In order for MLFF to be a viable method for scientific

discovery, it must provide a robust MD trajectory well beyond
the distribution of training sets. A number of studies have
reported that a high prediction accuracy does not warrant the
robustness in dynamical simulations;27,54 for example, MD
simulation may fail in an abrupt and unpredictable manner
even though an MLFF shows the best benchmark perform-
ance.54 To examine the accuracy and robustness of the MD
trajectory with Allegro-FM, we present two simulation results:

Figure 2. (a−j) Pair distribution function g(r) (solid line) and the coordination numbers N(r) (dotted line) of the T11 crystal using Allegro-
FM256 (blue) and QMD (red). g(r) and N(r) are shown with the same vertical scale for atomic pairs indicated in the left top corner of each panel.
The system is thermalized at temperature 300 K with the canonical (NVT) ensemble. Beside the peaks in g(r), Allegro-FM accurately reproduces
the extent of thermal motion including H2O molecules. All calculations are performed using Allegro-FM256 (see Table 1).

Figure 3. Horizontal and vertical axes show reaction coordinates and activation energies of the decomposition reaction of a carbonic acid into H2O
and CO2 molecules, respectively. (a and b) Two distinct reaction pathways described in the main text are shown. The inset images show the atomic
configurations of initial, transition, and final states obtained by NEB calculation. Red, cyan, and white spheres represent O, C, and H atoms,
respectively. All results are aligned by the initial state energy as reference. All calculations are performed using Allegro-FM256 (see Table 1).

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.5c00605
J. Phys. Chem. Lett. 2025, 16, 6637−6644

6639

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5c00605/suppl_file/jz5c00605_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5c00605/suppl_file/jz5c00605_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.5c00605/suppl_file/jz5c00605_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00605?fig=fig3&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.5c00605?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(1) a tensile test on the T11 crystal and (2) a tobermorite
nanoparticle (TNP) immersed in a mixture of H2O and CO2
molecules at an elevated temperature of 1200 K.
The fracture mechanics of silicate materials have been

extensively studied due to the technological importance as well
as its fundamental scientific questions.55−58 To examine the
fracture behavior of T11 crystal, we have performed tensile
loading simulation along the c-axis that involves the lowest-
energy surface59 and validated by QMD simulation with GGA-
PBE functional. Figure 4a shows the stress−strain curve

obtained by QMD and Allegro-FM. The system is thermalized
at 300 K and subjected to a tensile strain along the c-axis. We
have tested two model sizes (Allegro-FM256 and Allegro-
FM512) and two strain rates, 1010 s−1 and 5 × 109 s−1. Overall,
all systems show a clean cleavage plane between the calcium
double layer. Allegro-FM and QMD show virtually identical
results in the elastic regime with a small strain. While the effect
of strain rate using Allegro-FM256 is almost negligible, the
T11 system fractured at a strain of 0.13, which is 30% larger
than the QMD result. Allegro-FM512 in turn shows a nearly
identical result with QMD: a brittle fracture at 11% strain (see
Figure 4b).
Carbonation of silicates at the solid−liquid interface involves

multistep chemical reactions and is affected by many factors,
such as temperature, pH, and complex material geometries and
surface morphology. We have carried out a surrogate
simulation of the carbonation reaction process, in which a

tobermorite nanoparticle (TNP) is placed in a mixture of H2O
and CO2 molecules. The system temperature is relaxed at 300
K first, then subsequently heated to 1,200 K. The temperature
is kept at 1,200 K using the NVT ensemble to accelerate the
overall reaction. Figure 5a shows the initial shape of TNP.
After elevating the temperature to 1,200 K, we observe the
formation of carbonate and bicarbonate molecules around
TNP (see Figure 5b). After 0.16 ns, active leaching of Ca and
TNP dissolution are observed (see Figure 5c). The obtained
MD trajectory was robust, and no spurious event such as
overlapping atoms nor abrupt simulation failure was observed.
While the above fracture and nanoparticle-dissolution

simulations demonstrate the robust generalizability of Alle-
gro-FM to nonequilibrium MD simulations, practical applica-
tions involving nontrivial microstructures will require million-
to-billion atom MD simulations.33,60 We have confirmed the
scalability of Allegro-FM on an exaflop/s parallel super-
computer. Namely, we have achieved 97.5% of the perfect
speedup for 4.08 billion atoms on 4,096 graphics processing
units (GPUs) on the Aurora supercomputer at Aronne
Leadership Computing Facility (ALCF) (see Figure S2 in
the Supporting Information).
Allegro-FM can perform versatile tasks beyond the original

distribution of training data sets, as evidenced by the
simulations of activation energy, tensile test, and TNP
reactions. Though the force loss obtained in this study (130
meV/Å) is roughly three times higher than a guideline
proposed by Chmiela et al.,61 Allegro-FM exhibits a robust
predictability and generalizability for reactions that are
important in the geochemical cycle and cement chemistry,
indicating the capability of Allegro-FM even without fine-
tuning. Unlike a conventional ML model that is trained for a
narrowly defined task, Allegro-FM is compatible with 89
elements in the periodic table. Therefore, incorporating other
important metals such as Al, Fe, Mg, and Ti into the
aforementioned calculations does not require time-consuming
data generation or expensive model training from scratch. As
an example, our preliminary results show that Allegro-FM can
be effectively fine-tuned to a new data set aligned with the TEA
framework without compromising the original accuracy. Since
the size of the additional training set is usually much smaller,
roughly 10% of original training data, it requires much less
resources, e.g., 3 days on 8 NVIDIA A100 GPUs for initial
training vs. 24 h on a single A100 for fine-tuning. Yet, we also
note that Allegro-FM is not a universal force field that can be
used as a black box. We have observed suboptimal perform-
ance for magnesium silicate systems with the current models,

Figure 4. Tensile test on the T11 system thermalized at 300 K. (a)
Stress−strain curves with QMD, Allegro-FM with two different model
sizes (256 and 512). We have examined two strain rates, 1010 s−1
(open circles) and 5 × 109 s−1 (solid squares), that do not exhibit
noticeable difference in the stress−strain curve. The abrupt drop in
stress value indicates a brittle fracture. (b) Screenshot of a fractured
T11 crystal. Blue-dotted lines indicate its cleavage plane at the Ca
double layer.

Figure 5. Snapshots of a tobermorite nanoparticle (TNP) placed in a mixture of H2O and CO2 molecules. Ca, Si, C, O, and H atoms are color-
coded as green, khaki, gray, red, and blue, respectively. H2O and CO2 molecules are not shown for clarity. (a) Original TNP. (b) Shape of NP right
after the system temperature is increased to 1,200 K. A noticeable formation of CO3 and CO3H molecules around the NP is observed. (c) After
0.16 ns, many Ca atoms dissolve from the NP into the H2O and CO2 mixture.
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in which the prediction accuracy may be enhanced by fine-
tuning.
Equipped with the robust predictability, generalizability,

computational efficiency, and algorithmic scalability, Allegro-
FM has great potential for dynamical simulations spanning the
micrometer spatial extent for microseconds time scale without
sacrificing the atomistic details. This framework may be used
to study the nanostructure of calcium silicate gel,62 reaction-
induced fracture,63 self-healing cement,64 and durable cement
design,36 thereby providing a novel atomistic simulation
approach for geophysical science and civil engineering
applications.

■ METHODS
The electronic states were calculated using the projector
augmented method (PAW)65,66 within the framework of the
density functional theory (DFT) in which the generalized
gradient approximation (GGA-PBE)67 was used for the
exchange−correlation energy. The planewave cutoff energies
for the pseudo wave function and pseudo charge density were
30 and 200 Ry for tobermorite system and 30 and 250 Ry for
the H2O−CO2 system, respectively. In the MD simulations,
the equations of motion for atoms were solved via an explicit
reversible integrator with a time step of Δt = 0.48 fs. The g(r)
in Figure 2 was obtained by averaging over 0.72 ps after the
initial equilibration, which takes 0.24 ps. For the tensile
simulation in Figure 4, the system was thermalized at 300 K in
the canonical ensemble and subjected to tensile strain in the z-
direction with a strain rate of 1 × 1010 s−1. Further details of
fracture simulations schedule are provided elsewhere.68 For
each applied strain, the system was simulated in the NVT
ensemble for 0.48 ps. After the stress stabilized, the stress value
for that strain was calculated by averaging over the last 0.29 ps.
The Allegro potential was implemented through NequIP,

incorporating an E(3) symmetry equivariant neural network
coded by e3nn69 on the PyTorch framework. The model
architecture, in the case of Allegro-FM256, consists of two
layers of 64 tensor features with l = 2 in full O(3) symmetry.
The network utilizes several multilayer perceptrons (MLPs)
with specific configurations: a two-body latent MLP with
dimensions [64, 128, 256] and a later latent MLP with
dimensions [256, 256, 256], both employing SiLU non-
linearities. Table 1 presents the specifications of each model
used in this study. The embedding MLP was implemented as a
linear projection, while the final edge energy MLP comprised a
single hidden layer without nonlinearity. All MLPs were
initialized according to a uniform distribution of unit variance.
The training protocol employed a radial cutoff of 5.2 Å, with
the loss function combining the per-atom energy, force, and
stress root-mean-square errors under 8:1:1 weight ratio.
Parameter optimization was performed using the Adam
optimizer. All calculations were performed using Sophia at
the Argonne Leadership Computing Facility.
In this study, the Total Energy Alignment (TEA) framework

introduced by Shiota et al.26 is used to train the Allegro
network. TEA harmonizes heterogeneous quantum chemical

data sets through a two-step process: Inner Core Energy
Alignment (ICEA) and Atomization Energy Correction
(AEC). ICEA addresses systematic energy offsets arising
from different core electron treatments, while AEC scales
atomization energies to account for varying computational
fidelities. This methodology enables seamless integration of
data sets computed under different conditions without
extensive recalculations.
We utilized two complementary data sets to proceed

through the TEA method: the inorganic structure MPtrj data
set (calculated at PBE/PW level using VASP) and the OFF23
data set of organic molecules (computed at ωB97M-D3(BJ)/
def2-TZVPPD level using Psi4). The publicly available
integrated data set70 was preprocessed by removing structures
containing noble gas elements and those with forces exceeding
0.25 hartree to ensure stable training. This curated data set was
then used to train the Allegro network.
During training, we monitored both the overall loss

convergence and elementwise training performance. The
model achieved a root-mean-square error of 117 meV for per
atom energies, 130 meV/Å for forces, and 16 MPa for stress on
the test data set.
We first created a bulk amorphous tobermorite using

CLAYFF,68 then cut out a tobermorite nanoparticle with a
radius of 1.2 nm. The nanoparticles were placed in a mixture of
H2O and CO2 molecules with a 50:50 ratio at a density of 1 g/
cm3. The cubic MD system of (4.57 nm)3 contains 267 C, 90
Ca, 133 Si, 2577 O, and 3259 H atoms, respectively. The
system is relaxed at 300 K using the NVT ensemble with 0.5 fs
time step and then subsequently heated to 1,200 K in 22 ps. All
simulations are performed using RXMD software.71
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