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ABSTRACT: Diffusion in solids is a slow process that dictates rate-limiting processes in key
chemical reactions. Unlike crystalline solids that offer well-defined diffusion pathways, the lack
of similar structural motifs in amorphous or glassy materials poses great challenges in bridging
the slow diffusion process and material failures. To tackle this problem, we propose an AI-
guided long-term atomistic simulation approach: molecular autonomous pathfinder (MAP)
framework based on deep reinforcement learning (DRL), where the RL agent is trained to
uncover energy efficient diffusion pathways. We employ a Deep Q-Network architecture with
distributed prioritized replay buffer, enabling fully online agent training with accelerated
experience sampling by an ensemble of asynchronous agents. After training, the agents provide
atomistic configurations of diffusion pathways with their energy profile. We use a piecewise
nudged elastic band to refine the energy profile of the obtained pathway and the corresponding
diffusion time on the basis of transition-state theory. With the MAP framework, we
demonstrate atomistic diffusion mechanisms in amorphous silica with time scales comparable
to experiments.

From the carburizing process of steel in the Roman age1 to
modern industries of semiconductors,2,3 Li-ion bat-

teries,4−6 high entropy alloys,7,8 and resistive memories,9,10

control of solid diffusion has been central in materials science
and engineering. Based on the systematic study of salt diffusion
in water by Graham, Fick provided the mathematical
formulation of the diffusion in liquid, known as Fick’s
law.11,12 Fick’s law describes the diffusion process as the
mass transport driven by the gradient of concentration.
Diffusion following Fick’s law is well-characterized by
Brownian motion; however, anomalous and non-Fickian
diffusions at nanoscale have been attracting great attention to
further advance the frontier of nanoengineering and novel
system designs.13,14

Molecular dynamics (MD) simulation is an excellent
computational tool that may provide mechanistic under-
standings of atomistic-level events; at the same time, it poses
great scientific challenges. Diffusion in solids is a slow process
in general. The computational cost of MD simulations
prohibits accessing the relevant time scale of molecular
diffusion in solids. The current state-of-the-art (SOTA) direct
MD simulation achieves a million-atom simulation for over
100 μs per day,15 which amounts to a remarkable
spatiotemporal throughput of NT = 100 where N is the total
number of atoms and T is the simulation time. This allows
access to many biologically relevant processes; however, it is
still intractable to simulate the hours- or days-long time scales
that are commonly observed in solids. Here, we propose the
molecular autonomous pathfinder (MAP) framework combin-
ing deep reinforcement learning (DRL)16−18 and the

transition-state theory (TST)19 to explore complex energy
landscapes and automatically uncover energy-efficient diffusion
pathways with minimal human intervention. As a demon-
stration of long-time atomistic simulation, we apply the MAP
framework to a decades-long problem of the water diffusion
process in silica glass.

Great strides have been made in the last two decades to
extend accessible time scale using MD simulation,20 including
accelerated molecular dynamics (AMD) simulation methods
such as temperature-accelerated dynamics, parallel replica, and
hyperdynamics. While such physically accurate exploration of
the energy landscape is necessary to quantify long-time
dynamics, its intractable exponential complexity21 warrants
an alternative heuristic to serve much needed technological
needs for quickly screening resilient materials against failure.
To estimate the time-to-failure of materials, the long-tail
behavior of the probability distribution function plays a crucial
role. For example, the reliability and lifetime modeling
commonly employ a Weibull distribution. Generalized extreme
value distribution22 concerns the distribution of block maxima
to deal with events significantly deviating from their mean,
such as catastrophic failures. The scope of the MAP framework
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therefore is to present the existence of possible diffusion
pathways, with an upper bound estimate of diffusion time,
which are critical inputs for materials lifetime analysis and
reliability tests. Further discussion is given below in the
description of the MAP framework.

Reinforcement learning23 is a field of machine learning in
which an agent interacts with the environment to find an
optimal policy by maximizing the cumulative reward. DRL
extends conventional RL algorithms using deep learning
techniques and finds diverse applications in robotics, video
games, finance, and healthcare, as well as a mission-critical
plasma control in the nuclear fusion reactor.24 DRL has been
also applied to molecular simulations, including the opti-
mization of advanced materials synthesis,25,26 novel drug
designs,27,28 and transition state (TS) search.29 Deep Q-
Network (DQN) is one of the most successful DRL algorithms
based on Q-learning,30 which solves the Bellman optimality
equation

* = [ + * ]Q s a r Q s a( , ) max ( , )a A (1)

where s and s′ are the current and next states, a is the action, γ
is the discount factor, r is the reward, Q* is the optimal state-
action function, and denotes an expectation value.

Using DQN, Minh et al. demonstrated superhuman
performance for 49 Atari games by using only pixels and
game score as inputs. The Q-function is modeled as a
convolutional neural network (CNN) to incorporate the
complex state definition, i.e., pixel images of the Atari games.
The network parameter is trained by minimizing the temporal-
difference (TD) error as loss function given as

= [ +

]

L r Q s a

Q s a

( ) ( max ( , ; )

( , ; ))

s a r s D a A( , , , )

2 (2)

where agent’s experience et = (st, at, rt, st+1) is randomly
selected from the experience replay buffer D. The Q-function is
modeled as a three-dimensional CNN. θ− and θ are the
parameters of the target and behavioral networks to reduce the
variance during model training, respectively. Several extensions
to the vanilla DQN have been developed to further improve
the performance. Hessel et al. proposed Rainbow DQN and
achieved roughly 2× improvement for all 57 Atari games.31

Horgan et al. demonstrated that distributed training could also
significantly improve the performance.32 Their distributed
DRL algorithm consists of a single learner process that learns
from experiences collected by hundreds of actor processes.
These experiences are prioritized by their TD error value;
thereby, the learner can avoid experiences that have already
been learned well. With the distributed replay buffer and using
360 actors, they have achieved approximately 2.3× perform-
ance improvement in about half of the SOTA time.32

Inspired by the DRL architecture that offers superhuman
capability to explore an extremely large parameter space and
autonomously develop an optimal policy, we have designed the
MAP architecture as shown in Figure 1. In the first phase, we
use a scalable DRL to train autonomous molecular agents to
find energy-efficient diffusion pathways. While offline training
takes advantage of precomputed data it suffers from the
distribution shift problem, which is one of the central
challenges in offline RL.4 On the other hand, the application
of online training is severely limited by its sample inefficiency.
To realize a generic framework that is applicable to a wide class
of material problems, MAP employs online training to avoid
the distribution shift problem with accelerated sampling
efficiency using distributed and asynchronous agents (see
Figure S1). In the second phase of MAP, the obtained
diffusion pathways are divided into mutually exclusive
segments, each of which contains a candidate TS. We apply

Figure 1. Molecular autonomous pathfinder framework. (a) A schematic of agent (green) navigating a molecule in the simulation system. RL agent
and target molecule are connected by a harmonic potential interaction indicated by the green curve. (b) A snapshot of a state. Three-dimensional
grid captures the local density distribution of surrounding atoms around the target molecule. The value of the 3D grids is the sum of the Gaussian
kernel centered at the neighbor atoms. (c and d) A schematic of agents and learner processes. Note that each agent has its own environment and
does not interact with other agents. When an agent is instantiated, they are assigned different ε values (indicated by εi) making some agents favor
Q-value predicted by the CNN model (exploitation) and others behave more randomly (exploration). Agents’ experiences are sent to the learner
process and prioritized with their TD error value. Learner trains three-dimensional CNN that maps the state to the Q-function value for each action
by minimizing the TD error. (e and f) Obtained diffusion pathways are further refined using the piecewise-NEB algorithm for an accurate
description of transition states.
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a piecewise nudged elastic band (pNEB) method on each
segment to refine the energy barriers. Based on transition-state
theory,33 the associated time of each segment is estimated as

= { }

i
k
jjjjjj

y
{
zzzzzzT

k T
E
k T

expm i
A

i

1,...,NE
B

( )

B
A

(3)

where ℏ is the reduced Plank constant, kB is Boltzmann
constant, T is temperature, NEA is the total number of energy
barriers, and EA

(i) is the ith energy barrier along the pathway.
Since each NEB calculation can be done in parallel, our MAP
framework efficiently evaluates the total diffusion time.

Water diffusion in silica is a crucial process in predicting and
controlling the mechanical response of silicate materials. The
presence of water is known to affect the physical and chemical
properties of silicates significantly; however, its atomistic
mechanism has been argued for many decades.34−41 Stress
corrosion cracking (SCC) is an archetypal example where
subcritical crack growth is observed under a moist environ-
ment. With moisture, a crack tip of silica glass is found filled
with water. These water molecules react with stretched
siloxane bonds and break into two silanol groups subjected
to tensile loading. A three-stage model is usually used to
describe the overall fracture behavior. While a simple
mechanical argument applies to the first and third stages, the
crack growth rate does not depend on applied stress in the
second stage where molecular diffusion is considered as the

rate-limiting step. While a conventional view of SCC is
sequential SiO bond breaking by water at the crack tip, recent
studies have shown the possibility of fast diffusion pathways
mediated by nonbridging oxygens (NBOs) as well as the
increased free volume due to stress concentration around the
vicinity of the crack tip. Water diffusion in silica glass also finds
important applications in earth and planetary sciences.42 To
investigate molecular diffusion mechanisms through the
mantle, silica glass has been used as an experimental
platform.35,36

Since the learning of RL agents is driven solely by the reward
functions that are hand-tuned hyperparameters, care needs to
be taken on how to interpret the obtained RL trajectories.
Furthermore, while learning metrics increase over time, it does
not necessarily mean that the obtained trajectory has
converged to the most energy-efficient pathway within a
given reward structure, computing resource, and training time.
These trajectories that the MAP framework generates should
be considered as a set of possible diffusion pathways with an
upper bound estimate of diffusion time. As such, the MAP
framework may provide the long-tail samples in a reliability test
of material service lifetime.43,44

The following section describes the key components of the
MAP framework.
Environment. The environment is modeled by the reactive

molecular dynamics (RMD) simulation. To incorporate the
energetics of bond breaking and formation during agent
training, we employ the quantum-mechanically validated
ReaxFF45,46 force field and a scalable MD software RXMD.47

The silica glass structure was created by the melt−quench
method.48 The system dimensions are (30.48 Å)3. The total
number of atoms are 1,593 including one H2O molecule
navigated by the RL agent. Throughout the training, the
system is thermalized at 10 K with the canonical (NVT)
ensemble with a time step of 0.5 fs.
Agent. An agent is defined as a harmonic interaction function

that is bound to an atom to facilitate molecular diffusion
through silica glass (Figures 1a and S1). The center of the
harmonic potential, i.e., the agent position, is bound to the O
atom of the H2O molecule and updated following the agent’s
action. We employ discrete actions defined as displacement
vector, a⃗, to update the agent’s position. We choose a⃗ =
[(1,0,0), (0,1,0), (0,0,1), (0,−1,0), (0,0,−1)] to avoid the
agent oscillation problem.49 State, s, is defined as a three-
dimensional grid that approximates the distribution of
neighboring atoms around the agent. From each neighbor
atom, the Gaussian kernel is used to represent their
contribution to the local density. Based on the predicted Q-
function value given a state s, the agent updates its position
ragent by a chosen vector multiplied by a displacement
magnitude δ.

= + Q s ar r argmax ( , )
a

agent agent
(4)

To facilitate the agents’ exploration, we use ε-greedy policy
where an action is randomly chosen with the probability of ε
value regardless of the Q-value. For the distributed training,
each agent is assigned a different randomness factor ϵ = (0,
ϵmax) to control their extent of exploration (Figure 1c). After
an action has been taken, the H2O molecule and silica system
are relaxed by a short RMD simulation.
Learner. The main tasks of the learner process are to

organize agents’ experiences by their TD error, update model

Figure 2. (a and b) Training performance as a function of the number
of agents. Panels a and b show the agent’s final position and the total
reward with N = 1, 4, and 16, respectively. For the training with N >
1, the solid line shows the mean of all agents’ performance and the
shade represents their standard deviation. Overall, the training
performance improved by increasing N. While the final agent position
is comparable with N = 4 and 16 up to 10,000 steps, the total reward
with N = 16 is approximately 2 times greater than the one with N = 4,
indicating that more efficient pathways have been discovered with N =
16. (c and d) An ablation study on the reward functions where the
agent’s final position and total reward are monitored with one of the
four rewards (Rposition, Renergy, Rdensity, and Rdistance) are turned off. All
results are obtained with N = 16. Rposition serves the baseline reward
while Renergy helps agents find diffusion pathways with greater total
rewards.
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parameters of the Q-function, and synchronize the updated
model with agents. When the learner receives the agent’s
experience, the learner computes the TD error and stores a
tuple of experience and the computed TD error in the replay
buffer. To compute the loss function eq 2, the learner
randomly samples batch-sized tuples from the reply buffer with
a probability proportional to the TD error. A large TD error

value indicates an unearned situation for the model. The
prioritized reply buffer is particularly useful when many agents
tend to accumulate experiences around the initial starting
location.32

Reward. We used five reward functions in total to train the
agents. The function Rposition gives reward based on the
distance between a predefined goal and the location of the

Figure 3. (a−f) Potential energy profile before (green) and after (blue) pNEB on the last six energy efficient pathways using N = 16 after 48 h of
training. The vertical axis is the potential energy of the system in eV units, and the horizontal axis is the number of actions. The cumulated number
of actions of the episode I−VI is 31,068, 30,752, 28,243, 27,835, 24,020, and 23,989, respectively. The initial, final, and transition states in the
original energy profile are identified by SciPy signal processing library. The five episodes except episode I have converged to a similar profile that
consists of an initially flat region followed by two consecutive energy barriers approximately around the 100th and 120th action. Episode I shows an
additional peak around the 120th action.

Figure 4. (a) Potential energy profile before (green) and after (blue) pNEB and three TSs (red circles) in episode II. (b−d) Atomic configurations
of the three TSs in panel a. Green lines in panels b−d indicate the closest Si from the O atom in the RL-guided H2O molecule. (e) Potential energy
profile of episode I before (green) and after (blue) pNEB along with the two TSs (orange circles) during the H2O molecule hopping from Si2 and
Si3. (f) Atomic configuration of the second TS color-coded by the atomic displacement from their initial position. A large displacement (over 1 Å)
on Si2 indicates the stored mechanical strain energy in the TS.
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agent. In this study, we used the x-coordinate of the agent as
the reward value. This monotonically increasing function
serves as the baseline of the overall reward structure. Renergy
rewards an agent if the current state has a potential energy
lower than the reference potential energy. To minimize the
noise in the reference energy, we use the mean of the potential
energy over a prescribed number of MD steps. Rdensity penalizes
the agent, i.e., gives a negative reward if the distance between
the agent and surrounding atoms becomes too small. Similarly,
we also apply a penalty Rdistance if the distance between the
agent and the water molecule becomes greater than a
prescribed threshold. Technically, an agent may earn rewards
by making actions with positive rewards without moving away
from the same location. To achieve efficient learning of the
environment, a common practice is to apply a time penalty,
Rtime, with which an agent receives a negative reward whenever
a new action is made. Total reward Rtotal is the sum of the five
rewards with weighting perfectors that are tuned as hyper-
parameters.

Given the reward structure, we investigated the training
efficiency as a function of the number of agents, N. As the
measure of the agent’s performance, we record the agent’s x-
coordinate and total reward at the end of each epoch. Figure 2
shows a typical agent’s performance with N = 1, 4, and 16
during 48 h of training. Overall, increasing the number of
agents results in better performance for both the agent’s final
coordinate and the total reward. With N = 1, the total reward is
kept low, although the final position consistently increases.
With N = 4, both metrics increase at the beginning; however,
the increase rate slows down after 10,000 steps. With N = 16,
the final agent position increases further with a smaller
deviation. While the final position is comparable with N = 4
and 16 up to 10,000 steps, the total reward with N = 16 is
noticeably better, approximately 2 times greater than the one
with N = 4.

Next, we performed an ablation study with one of the reward
functions turned off (Figure 2c,d). We observe that Rposition
serves as the baseline reward for an agent to learn the proper
direction to move. With Rposition off, the agent’s final position
remains around 13 Å (out of 30.48 Å) and the total reward
remains negative. With Renergy turned off, the agent also appears
to struggle, resulting in a suboptimal final position around 18 Å
and the value of total reward is about 30, respectively. On the
other hand, a decent training performance is obtained with
either Rdensity or Rdistance turned off, signifying the important
contribution of Rposition and Renergy for agents to learn the
environment.

Once sufficient pathways have been sampled, we applied
pNEB to refine the description of transition states and used eq
3 to estimate the diffusion time. Figure 3 shows the potential
energy profile of the top six episodes (episodes I−VI) ranked
by their diffusion time after 48 h of training using N = 16. The
original energy profile obtained by the RL agent is divided into
several segments, each of which contains one initial, final, and a
candidate of TS. Subsequently, pNEB is simultaneously
performed on each segment in the energy profile. After the
pNEB calculation, the five episodes (II−VI) have converged to
a similar energy profile, in which a rather flat region continues
up to around the 90th action, followed by two noticeable
energy barriers around the 100th and 120th actions. In
addition to the existing two barriers, an additional TS with a
relatively small activation energy (∼ 0.8 eV) is observed at the
117th action in episode I.

To obtain atomistic insights along the diffusion pathway,
Figure 4 presents a series of snapshots of the TSs of episode I
shown in Figure 3a. In the episode, the H2O molecule is first
weakly absorbed by a siloxane bond50 and detaches from the
site after a few actions. After the 80th action, the H2O
molecule is moved to an undercoordinated Si site, which
results in the reduction of potential energy approximately by 1
eV. Soon after, the H2O molecule hops to another under-
coordinated Si site by a concerted switching of neighboring Si
atoms (Figure 4c). Finally, the H2O molecule detaches from
the silicon, labeled as Si3 in Figure 4d. In episode I, however,
the hopping between the two Si atoms occurs in two steps
(shown in Figure 4e,f). Instead of the direct hop, the H2O
molecule approaches Si3 moving around Si2, accumulating the
strain energy by distorting the silica network. The acquired
strain energy facilitates the desorption of the H2O molecule
from the Si2 site, reducing the overall energy barrier.
Consequently, the estimated diffusion time by the two-step
hopping mechanism is reduced by a factor of 15, namely 0.124
vs 1.93 days to travel 3 nm at 350 °C in episodes I and II,
respectively. The obtained time scale is comparable to
experimental observations.36,38

In conclusion, we have developed a scalable AI-guided
framework combining DRL and TST to study the long-term
diffusion process in solids. Obtained energy profiles are further
refined using piecewise NEB to efficiently translate to the
overall diffusion time. The design of the MAP framework
focuses on its transferability to a wide class of material
problems; for example, the use of online learning to eliminate
the necessity of generating training data sets that often requires
expert domain knowledge, and the highly efficient sampling of
agent experiences by taking advantage of advanced computing
architectures. We applied the MAP framework to a long-
standing problem of water diffusion in silica glass, which
revealed a strain-assisted diffusion pathway. In addition to the
inorganic silica glass presented in this study, the MAP
framework has been successfully applied to organic polymer
systems,51 providing a novel approach to investigate long-time
diffusion mechanisms with atomistic-level insights.
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