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For large-scale atomistic simulations involving chemical reactions to study nanostructured energeticmaterials, we
have designed linear-scaling molecular dynamics algorithms: 1) first-principles-based fast reactive force field
molecular dynamics, and 2) embedded divide-and-conquer density functional theory on adaptive multigrids for
quantum-mechanical molecular dynamics. These algorithms have achieved unprecedented scales of quantum-
mechanically accurate and well validated, chemically reactive atomistic simulations [0.56 billion-atom first
principles-based fast reactive force field molecular dynamics and 1.4 million-atom (0.12 trillion grid points)
embedded divide-and-conquer density functional theory molecular dynamics] in addition to 18.9 billion-atom
nonreactive space-time multiresolution molecular dynamics, with parallel efficiency as high as 0.953 on 1920
Itanium2 processors. These algorithms have enabled us to perform reactive molecular dynamics simulations to
reveal various atomistic processes during 1) the oxidation of an aluminum nanoparticle, 2) the decomposition and
chemisorption of an RDX (1, 3, 5-trinitro-1, 3, 5-triazine) molecule on an aluminum surface, and 3) shock-initiated
detonation of energetic nanocomposite material (RDX crystalline matrix embedded with aluminum nanoparticles.

I. Introduction

P ETAFLOPS computers [1] to be built in the near future and
associated massive data analysis [2] will offer tremendous

opportunities for high-end computer simulations of nanostructured
energetic materials (NSEMs). The computing power will enable
unprecedented scales of first-principles-based predictive simulations
to understand microscopic mechanisms that govern macroscopic
materials behavior, thereby enabling rational design of material
compositions and microstructures to achieve high specific impulse
and insensitivity.

Specifically, we focus on thermomechanical properties and
microscopic mechanisms of detonation processes of RDX (1, 3,
5-trinitro-1, 3, 5-triazine, C3N6O6H6) crystalline matrix embedded
with aluminum nanoparticles, including shock-induced initiation of
detonation, chemically sustained shock wave, and shock-induced
flow initiation at the interfaces. Aluminum powders are widely used
as propellants, because their combustion products, such asAl2O3, are
accompanied by a large amount of heat release. Burn rates of
propellants can be accelerated by reducing the size of Al particles,
thereby increasing the surface to volume ratio and the rate of
chemical reactions. A major technical difficulty for such small
reactant particles is the dead weight of oxide layers. The thickness of
the oxidized layer in an Al particle is known to be a few nanometers
regardless of the particles’ size. Therefore, the ratio of the oxidized
layer, which is not effective as a propellant, to the reactive portion
increases for the smaller Al particles. This dead-weight problem in
nanoscale reactant particles may be overcome by encapsulating the
particles within complementary reactive materials such as RDX.

Prerequisite to petaflops-scale simulations of such NSEMs is a
hierarchy of algorithms that are scalable to 105 processors. The

multitude of length and time scales and the associated wide solution
space have thus far precluded such first-principles large-scale
approaches. Toward achieving first-principles-based atomistic
simulations of NSEMs at the petaflops-scale, we have developed
an embedded divide-and-conquer (EDC) algorithmic framework to
design linear-scaling algorithms for approximately solving hard
simulation problems with tight error control.

This paper describes our scalable parallel EDC simulation
algorithms to accurately describe the coupling of chemical reactions,
atomistic processes, and macroscopic materials phenomena and
presents their applications to several NSEMs. In the next section, we
describe the EDC algorithmic framework along with results of
benchmark tests. Section III describes applications of large-scale
chemically reactive molecular dynamics (MD) simulations to three
test cases: 1) the oxidation of an aluminum nanoparticle (nAl), 2) the
decomposition and chemisorption of an RDX (1, 3, 5-trinitro-1, 3,
5-triazine) molecule on an Al surface, and 3) shock-initiated
detonation of energetic nanocomposite material (RDX crystalline
matrix embedded with nAl). Finally, Sec. IV contains conclusions.

II. Scalable Parallel Molecular Dynamics
Simulation Algorithms

In the past several years, we have developed a unified embedded
divide-and-conquer algorithmic framework based on data locality
principles to design linear-scaling algorithms for broad scientific
applications with tight error control [3,4]. In the EDC algorithms,
spatially localized subproblems are solved in a global embedding
field, which is efficiently computed with tree-based algorithms.
Examples of the embedding field are 1) the electrostatic field in MD
simulations [5], 2) the self-consistent Kohn–Shampotential [6] in the
density functional theory (DFT) [7] in quantum-mechanical (QM)
simulations [4], and 3) coarser but less computer-intensive models in
hierarchical simulations that embed high-accuracy but computer-
intensive simulations within a coarse simulation only when and
where high-fidelity is required [8,9].

We have used the EDC framework to develop a suite of linear-
scaling MD algorithms, in which interatomic forces are computed
with varying accuracy and complexity. The Appendix describes the
three EDC simulation algorithms that are used in our simulations:
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1)AlgorithmMRMD: space-timemultiresolutionMD to solve the
formally O!N2" N-body problem in classical MD in O!N"
computing time [10].

2) Algorithm F-ReaxFF: first-principles-based fast reactive force
field to solve theO!N3" variable N-charge problem in semiclassical
reactive force field (ReaxFF) MD in O!N" time [3].

3) Algorithm EDC-DFT: embedded divide-and-conquer density
functional theory to approximately solve the exponentially complex
quantumN-body problem in quantum-mechanicalMD inO!N" time
[3,4].

The EDC algorithms are portable and have been run on various
high-end parallel supercomputers such as the Intel Itanium2-based
NASA Columbia and IBM Blue Gene/L (Fig. 1). The EDC
algorithms expose maximal data locality and thus achieve high
parallel efficiency. For example, the F-ReaxFF algorithm on
Columbia has achieved the parallel efficiency 0.953† on 1920
Itanium2 processors and over 0.999 on 512BlueGene/L processors.‡

The largest benchmark tests of the EDC simulation algorithms on
Columbia include 18,925,056,000-atom MRMD, 557,383,680-
atom F-ReaxFF, and 1,382,400-atom (121,385,779,200 electronic
degrees of freedom) EDC-DFT calculations [3]. Careful analysis of
the benchmark test results shows perfect linear scaling for all three
algorithms.

The EDC algorithms have a well-defined set of localization
parameters, which control the computational cost and the accuracy.

Figures 2a and 2b show the rapid convergence of the EDC-DFT
energy as a function of its localization parameters (the size of a
domain and the length of a buffer layer that augments each domain to
avoid artificial boundary effects). The EDC-DFTMD algorithm has
also overcome the energy drift problem [11], which plagues most
O!N" DFT-based MD algorithms, especially with large basis sets
(>104 unknowns per electron, necessary for the transferability of
accuracy) (Fig. 2c) [4]. It also has robust convergence properties in
contrast to many O!N" DFT-based MD algorithms that have
runaway solutions and fail to converge for some problems [11].

III. Reactive MD Simulations
of High-Energy Materials

A. Oxidation of an Aluminum Nanoparticle
Oxidation plays a critical role in the burning of energeticmaterials.

We have performed the first successful MD simulation of oxidation
of an Al nanoparticle (diameter 200 Å) [12,13]. The reactive MD
simulation is based on the interaction scheme developed by Streitz
and Mintmire [14], which can successfully describe a wide range of
physical properties of both metallic and ceramic systems.§ This
scheme is capable of treating bond formation and bond breakage and
changes in charge transfer as the atoms move and their local
environments are altered.

In our microcanonical MD simulation, energy released fromAl-O
bond formation is rapidly transported into the nanocluster resulting
in disordering of the Al nanocrystal and outward expansion of the
oxide region (see Fig. 3). The thickness of the oxide region increases
linearly with time and does not saturate. By 50 ps the thickness and
temperature of the oxide region are 35 Å and 2500 K, respectively.

Fig. 1 Total execution and communication times (perMDtime step) ofEDCMDsimulation algorithms as a function of the number of processorsP: a) F-
ReaxFF MD for scaled workloads: 10; 752P atom RDX systems on Blue Gene/L; b) F-ReaxFF MD for 36; 288P atom RDX systems on Columbia; and
c) EDC-DFT MD for 720P atom alumina systems on Columbia.

Fig. 2 Controlled convergence of the potential energy for amorphous CdSe by localization parameters: a) the domain size; b) the buffer length.
Numerals are the number of self-consistent iterations for the convergence; and c) total energy conservation in EDC-DFT-basedMD simulation of liquid
Rb (solid curve) compared with the time variation of the potential energy (dashed curve).

†Columbia is a cluster of 20 Altix boxes, each with 512 processors, and the
interbox parallel efficiency with the NUMAlink4 interconnect, from 480
processors in one box to 1920 processors in four boxes, is 0.995.

‡More recent benchmark results include 134 billion-atom MRMD, 1.06
billion-atom F-ReaxFFMD, and 11.8 million-atom (1.04 trillion grid points)
EDC-DFT MD simulations, with the parallel efficiency as high as 0.998 on
131,072 Blue Gene/L processors.

§The form of the Streitz–Mintmire interatomic potential is a subset of the
ReaxFF described in the Appendix.
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Subsequently, numerous smallAlxOy fragments are ejected from the
nanocluster surface, indicating that the nanocluster is exploding.
This behavior under closed conditions has also been observed
experimentally.

Such time-resolved temperature data in reactive MD simulations
provide indispensable insight into combustion mechanisms
underlying, e.g., experimental pyrometry data by real-time optical
measurements of the combustion of high-energy density materials
(Fig. 3). The pyrometry data were obtained using a three-color
method based on Planck’s law of blackbody radiation [15],
employing a fiber-coupled pyrometer built inhouse at the U.S. Army
Research Laboratory, with temporal resolution #11 !s. The
temperatures in Fig. 3 are of the surface of the expanding fire ball.

In our simulations, local stresses in the oxide scale cause rapid
diffusion of aluminum and oxygen atoms. The local stresses are
examined by separating the contributions from the electrostatic and
nonelectrostatic forces. We find that the attractive Coulomb forces
between aluminum and oxygen contribute a large negative pressure
localized in the oxide. The electrostatic pressure contribution
increases in magnitude toward the middle of the oxide where charge
transfer is the highest. The large attractive forces are partially offset
by steric repulsion, which gives rise to a positive nonelectrostatic
contribution to the local pressure in the oxide. Analyses of the local
stresses reveal large stress gradients throughout the nanocluster with
the oxide largely under negative pressure and the metal core under
positive pressure. Local pressures range between $1 and 1 GPa.

B. Decomposition of an RDX Molecule on an Aluminum Surface

We have also performed an MD simulation to study the
decomposition of an RDXmolecule on anAl (111) surface, in which
interatomic forces are computed quantum-mechanically according to
the Hellmann–Feynman theorem in the framework of DFT
(Fig. 4). The DFT calculation is based on the norm-conserving
pseudopotentials by Troullier and Martins [16] and the generalized
gradient correction by Perdew et al. [17], and it is implemented on a
real-space grid and accelerated with the multigrid method [4]. The
simulation shows the decomposition of NO2 fragments in RDX and
subsequent formation ofAl-O bonds on theAl surface. This suggests
that, to stop the premature reaction of RDX with a pure Al surface, a
nanoscale buffer layer may be necessary on the Al surface.

Our simulation reveals drastically different RDX decomposition
pathways due to the presence of the Al surface. Strong attractive
forces between oxygen and aluminum atoms break both N-O and N-
N bonds in the RDX and, subsequently, the dissociated oxygen
atoms and NOmolecules oxidize the Al surface. In addition to these
Al surface-assisted decompositions, ring cleavage of the RDX
molecule is also observed. These reactions occur spontaneously
without potential barriers, and result in the attachment of the rest of
the RDX molecule to the surface.

C. Shock-Induced Detonation of RDX/Aluminum Nanoparticles
Composite

On the basis of the preceding simulations ofAl nanoparticles (nAl)
and RDX-Al systems, we have recently performed 1.01 million-
atom F-ReaxFF MD simulation to study shock-initiated detonation
of RDX crystal/oxidized nAl composite. In the simulation, two slabs
of the RDX/nAl composite, each of size 482 % 353 % 65 !A3 in the x,
y, and z directions, are impacted with the impact velocity of 5 km=s
in the z direction. Each oxidized nAl consists of 707 atoms. The
simulation reveals atomistic processes of shock compression and
subsequent explosive reaction. Strong attractive forces between
oxygen and aluminum atoms break N-O and N-N bonds in the RDX
and, subsequently, the dissociated oxygen atoms and NO molecules
oxidize Al, which has also been observed in our DFT-based MD
simulation.

The F-ReaxFF MD method has been validated by comparing
calculated shock wave velocities in RDX with experimental data,
where a shock wave is generated by a planar impactor. Figure 5
compares MD and experimental results on the shock velocity as a
function of the particle velocity that drives the shock [18]. The MD
and experimental data agree very well. Furthermore, the simulation
shows a sudden increase of the number ofmolecular products such as
HONO, N2, and OH above a shock velocity #9 km=s, which is
consistent with an experimental detonation velocity [19].

We have found that the large simulation system size is essential for
quantitative study of shock velocity and shock structure, because it
takes time for a steady shock-front structure to be established. Our
simulation reveals a dynamic transition of the shock structure (from a
diffuse shock front withwell-orderedmolecular dipoles behind it to a
disordered dipole distribution behind a sharp front) as the shock
velocity increases.

Fig. 3 Temperature during combustion of energetic materials: a)
Temperature of atoms during the microcanonical MD simulation of Al
nanoparticle in an oxygen environment. The larger spheres correspond
to oxygen and smaller spheres to aluminum (color represents the
temperature); b) Experimental pyrometry data, showing the temper-
ature vs time during the combustion of energetic materials of various
formulations and weights.

Fig. 4 Snapshots ofDFT-basedMDsimulation on the decomposition of
an RDX molecule on an Al (111) surface.
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IV. Conclusions
In the past several years, significant progress has been made in

simulation methods, linear-scaling algorithms, and scalable parallel
computing technologies to enable first-principles-based predictive
simulations to study macroscopic properties of nanostructured
energeticmaterials with atomistic descriptions of chemical reactions.
In addition to the number of atoms in such simulations, an important
issue is the time scale studied by MD simulations. We define the
spatiotemporal scale NT of an MD simulation as the product of the
number of atoms N and the simulated time T. Our large MD
simulations of ceramics simulate subbillion atoms for subnano-
seconds, resulting in NT & 0:03–0:04 atoms ' s [20,21]. Petaflops
computers are expected to push the spatiotemporal envelope to
NT # 1 and beyond, thereby bringing in further new scientific
knowledge on energetic materials.

Appendix: Embedded Divide-and-Conquer
Simulation Algorithms

I. Algorithm MRMD: Space-Time Multiresolution Molecular
Dynamics

The MRMD algorithm is used as a template for developing broad
particle and continuum simulation algorithms. The MD approach
follows the time evolution of the positions, rN & friji& 1; . . . ; Ng,
of N atoms by solving coupled ordinary differential equations [10].
Atomic force law is mathematically encoded in the interatomic
potential energy EMD!rN", which is often an analytic function
EMD!frijg; frijkg" of atomic pair rij and triplet rijk positions. For the
long-range electrostatic interaction, we use the fastmultipolemethod
(FMM) to reduce the O!N2" computational complexity of the N-
body problem to O!N" [22]. In the FMM, the physical system is
recursively divided into subsystems to form an octree data structure,
and the electrostatic field is computed recursively on the octree with
O!N" operations, while maintaining spatial locality at each recursion
level. Our scalable parallel implementation of the FMMhas a unique
feature to compute atomistic stress tensor components based on a
complex charge method [23]. MRMD also uses temporal locality
through multiple time stepping, which uses different force-update
schedules for different force components [10,24,25]. Specifically,
forces from neighbor atoms are computed at everyMD step, whereas
forces from farther atoms are updated less frequently. For
parallelization, we use spatial decomposition. The total volume is
divided into P subsystems of equal volume, and each subsystem is
assigned to a node in an array of P compute nodes. To calculate the
force on an atom in a subsystem, the coordinates of the atoms in the
boundaries of neighbor subsystems are “cached” from the
corresponding nodes. After updating the atom positions due to
time stepping, some atoms may have moved out of its subsystem.

These atoms are “migrated” to the proper neighbor nodes. With
spatial decomposition, the computation scales as N=P, whereas
communication scales as !N=P"2=3. The FMM incurs an O!logP"
overhead, which is negligible for coarse-grained (N=P( P)
applications.

II. Algorithm F-ReaxFF: Fast Reactive Force Field Molecular
Dynamics

In the past five years, chemists have developed a first-principles-
based reactive force field (ReaxFF) approach to significantly reduce
the computational cost of simulating chemical reactions [18,26].
However, its parallelization has seen only limited success, with the
previously largest ReaxFF MD involving N < 104 atoms. We have
developed F-ReaxFF to enable ReaxFF MD involving 109 atoms
[3,27]. The variable N-charge problem in ReaxFF amounts to
solving a dense linear system of equations to determine atomic
charges fqiji& 1; . . . ; Ng at every MD step [12,28]. F-ReaxFF
reduces its O!N3" complexity to O!N" by combining the FMM
based on spatial locality and iterative minimization to use the
temporal locality of the solution. To accelerate the convergence, we
use amultilevel preconditioned conjugate-gradient (MPCG)method
that splits the Coulomb-interaction matrix into short- and long-range
parts and uses the sparse short-range matrix as a preconditioner [29].
The extensive use of the sparse preconditioner enhances the data
locality and thereby improves the parallel efficiency. The chemical
bond order Bij is an attribute of atomic pair !i; j" and changes
dynamically, adapting to the local environment. In ReaxFF, the
potential energy EReaxFF!frijg; frijkg; frijklg; fqig; fBijg" between
atomic pairs rij, triplets rijk, and quadruplets rijkl depends on the
bond orders of all constituent atomic pairs. Force calculations in
ReaxFF thus involve up to atomic 6-tuples due to chain-rule
differentiations through Bij. To efficiently handle the multiple
interaction ranges, the parallel F-ReaxFF algorithm employs a
multilayer cellular decomposition scheme for caching atomic n-
tuples (n& 2–6) [3].

III. Algorithm EDC-DFT: Embedded Divide-and-Conquer Density
Functional Theory on Adaptive Multigrids for Quantum-Mechanical
Molecular Dynamics

The EDC-DFT algorithm describes chemical reactions with a
higher quantum-mechanical accuracy than ReaxFF. The DFT
problem is formulated as a minimization of the energy functional
EQM!rN;  Nel" with respect to electronic wave functions (or Kohn–
Sham orbitals)  Nel!r" & f n!r"jn& 1; . . . ; Nelg, subject to
orthonormality constraints (Nel is the number of wave functions on
the order of N) [7]. The data locality principle called quantum
nearsightedness [30] in DFT is best implemented with a divide-and-
conquer algorithm [31,32], which naturally leads to O!N" DFT
calculations [11]. However, it is only in the past several years that
O!N" DFT algorithms, especially with large basis sets (>104

unknowns per electron, necessary for the transferability of accuracy),
have attained controlled error bounds, robust convergence
properties, and energy conservation during MD simulations, to
make large DFT-based MD simulations practical [4,33]. We have
designed an embedded divide-and-conquer density functional theory
(EDC-DFT) algorithm, in which a hierarchical grid technique
combines multigrid preconditioning and adaptive fine mesh
generation [4]. The EDC-DFT algorithm represents the physical
system as a union of overlapping spatial domains, "&[""", and
physical properties are computed as linear combinations of domain
properties. For example, the electronic density is expressed as

#!r" &
X

"

p"!r"
X

n

f"n j "
n!r"j2

where p"!r" is a support function that vanishes outside the "th
domain "", and f"n and  "

n!r" are the occupation number and the
wave function of the nth Kohn–Sham orbital in"". The domains are
embedded in a global Kohn–Sham potential, which is a functional of
#!r" and is determined self-consistentlywith ff"n;  "

n!r"g.We use the

Fig. 5 F-ReaxFF MD and experimental data on the planar shock
velocity in RDX as a function of the particle velocity.
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multigrid method to compute the global potential inO!N" time. The
DFT calculation in each domain is performed using a real-space
approach [34], in which electronic wave functions are represented on
grid points. The real-space grid is augmented with coarser multigrids
to accelerate the iterative solution. Furthermore, a finer grid is
adaptively generated near every atom to accurately operate ionic
pseudopotentials for calculating electron-ion interactions. The EDC-
DFT algorithm on the hierarchical real-space grids is implemented
on parallel computers based on spatial decomposition. Each compute
node contains one ormore domains of the EDC algorithm. Then only
the global density, but not individual wave functions, needs to be
communicated. The resulting large computation/communication
ratio makes this approach highly scalable.
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