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ABSTRACT 
Confluence of extreme-scale quantum dynamics simulations 

(i.e. quantum@scale) and cutting-edge x-ray free-electron laser 
experiments are revolutionizing materials science. An archetypal  
example is the exciting concept of using picosecond light pulses to 
control emergent material properties on demand in atomically-thin  
 

 
 
layered materials. This paper describes efforts to scale our quantum 
molecular dynamics engine toward the United States’ first 
exaflop/s computer, under an Aurora Early Science Program 
project named “Metascalable layered material genome”. Key 
algorithmic and computing techniques incorporated are: (1) 
globally-scalable and locally-fast solvers within a linear-scaling 
divide-conquer-recombine algorithmic framework; (2) algebraic 
‘BLASification’ of computational kernels; and (3) data alignment 
and loop restructuring, along with register and cache blocking, for 
enhanced vectorization and efficient memory access. The resulting 
weak-scaling parallel efficiency was 0.93 on 131,072 Intel Xeon 
Phi cores for a 56.6 million atom (or 169 million valence-electron) 
system, whereas the various code transformations achieved 5-fold 
speedup. The optimized simulation engine allowed us for the first 
time to establish a significant effect of substrate on the dynamics of 
layered material upon electronic excitation. 
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1 Introduction  
Over the past 30 years, quantum molecular dynamics (QMD) has 

been developed into a powerful simulation methodology, with 
which we can now study complex material dynamics incorporating 
their intrinsically quantum nature [1-3]. For example, recent 
advancements in ultrafast materials science have raised the exciting 
possibility of using picosecond light pulses to switch emergent 
material properties on demand in various functional materials [4]. 
An archetype is optically-induced semiconductor-to-metal phase 
transition in atomically-thin layered materials (LMs) [5], where 
nanoscale metal wires are lithographed using a laser beam to 
fabricate electronic circuits [6]. Here, state-of-the-art x-ray free-
electron laser (XFEL) [7, 8] and ultrafast electron diffraction 
(UED) [9, 10] experiments provide unprecedented capability to 
observe such light-induced material dynamics with sub-nanometer 
spatial and sub-picosecond time resolutions. Synergy between 
leadership-scale QMD simulations [11] and ultrafast XFEL/UED 
experiments provides fundamental understanding of quantum 
dynamics, thereby revolutionizing ultrafast control of quantum-
material properties. For example, recent QMD simulations not only 
reproduced surprising near-100% quantum efficiency for 
picosecond (ps) conversion of photo-induced electronic-excitation 
energy to crystalline lattice motions observed in XFEL and UED 
experiments, but also determined their structural transition 
pathways and electronic origins, e.g., electronic excitation-induced 
Fermi-surface nesting and phonon softening [8, 9, 12]. 
 

In order to perform extreme-scale QMD simulations (i.e. 
quantum@scale) on the United States’ first exaflop/s computer, 
Aurora A21, in tandem with the next-generation XFEL 
experiments at the forthcoming LCLS-II (Linac Coherent Light 
Source) facility at SLAC National Accelerator Laboratory, the 
Aurora Early Science Program (ESP) project, “Metascalable 
layered material genome” [13], is porting our QMD simulation 
engine to A21. The key computational challenge here is to 
simultaneously achieve high scalability on a large number of 
computing nodes with high floating-point (FP) performance on 
massive cores within each node. We address this challenge through 
a concept of global-local separation. Based on a divide-conquer-
recombine (DCR) algorithmic framework [14], which is 
metascalable (or “design once, scale on new architectures”) with 
minimal architectural assumptions [15], our globally-scalable and 
locally-fast (GSLF) electronic-structure solvers hybridize highly-
scalable global real-space multigrids with local plane-wave bases 
for fast Fourier transforms (FFT). This global-local separation 

allows us to focus on local performance optimization within each 
node, while leaving internode message passing intact, when porting 
the QMD engine to a new computer architecture like A21. 
 

This paper describes computational techniques and preliminary 
performance results in our Aurora ESP project. In preparation for 
the Intel A21 architecture, we have transformed computations 
using (1) algebraic ‘BLASification’ of computational kernels and 
(2) data alignment and loop restructuring, along with register and 
cache blocking, for enhanced vectorization and efficient memory 
access. Preliminary benchmark tests were performed on an Intel 
Xeon Phi Knights Landing (KNL) platform, with special focus on 
single-instruction multiple-data (SIMD) data parallelism. 

2 Simulation Method  
QMD follows the trajectories of all atoms while computing 

interatomic forces quantum mechanically from first principles in 
the framework of density functional theory (DFT) [16, 17]. By 
solving N one-electron problems self-consistently instead of 
directly solving one N-electron problem, DFT reduces the 
exponential complexity of the quantum N-body problem to O(N3). 
QMD simulations are typically limited to small systems involving 
a few hundred atoms due to its O(N3) complexity. 
 

 
Figure 1: 3D schematic of divide-and-conquer (DC) spatial 
decomposition. The simulation cell 𝛀 is subdivided into non-
overlapping cores 𝛀𝟎𝜶 (colored in cyan). Buffer region (colored 
yellow), 𝚪𝜶, of thickness b is added on all six sides of each core. 
A spatially-localized domain, 𝛀𝜶 = 𝛀𝟎𝜶 ∪ 𝚪𝜶, is union of core 
and buffer region. 
 

To overcome the O(N3) bottleneck, various O(N) DFT 
algorithms have been designed [18, 19] on the basis of the data-
locality principle called quantum nearsightedness [20, 21]. Among 
them, the divide-and-conquer (DC) DFT algorithm [22-24] 
pioneered by Weitao Yang [22] is highly scalable [25] on massively 
parallel computers. DC-DFT represents the three-dimensional 
space Ω as a union of spatially-localized domains, Ω = ⋃ Ω))  (Ω) 
is the a-th domain), and global physical properties are computed as 
linear combinations of local domain properties. While the 
electronic Kohn-Sham (KS) wave functions {𝜓,(�⃗�)} and charge 
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density 𝜌(𝑟) = ∑ |𝜓,(�⃗�)|5,  are obtained in a self-consistent-field 
(SCF) iteration in conventional O(N3) DFT [26], in O(N) DC-DFT, 
local KS wave functions {𝜓6)(𝑟)} and global charge density 

 

 𝜌(𝑟) = ∑ ∑ 𝑝)(𝑟)|𝜓,)(�⃗�)|5,)  (1) 
 

are determined instead in a “global-local SCF” iteration [15]. Here, 
𝑝)(𝑟) is a partition of unity, ∑ 𝑝)(𝑟) = 1)  at every spatial position 
𝑟, which is compactly supported (i.e., 𝑝)(�⃗�) = 0 if 𝑟 ∉ Ω)). In Eq. 
(1), 𝜓,)(𝑟) is the n-th KS wave function in the a-th domain (Fig. 
1). 
 

Numerically, local KS wave functions are obtained by solving 
an eigenvalue problem with the preconditioned conjugate-gradient 
(PCG) method concurrently among all domains. Here, the 
Hamiltonian operator acting on each 𝜓,)(�⃗�)  contains the 
electrostatic Hartree field 𝑉<(�⃗�) . This global field in turn is 
obtained from the global electron density by solving Poisson’s 
equation: 

 
 ∇5𝑉>(�⃑�) = 	−4𝜋𝜌(𝑟) (2) 

 
The local KS wave functions 𝜓,)(𝑟),  global density 𝜌(𝑟)  and 
Hartree field 𝑉<(�⃗�), along with the global chemical potential µ , are 
thus obtained in a fixed-point iteration in the global-local SCF 
iteration. Workflow of DC-DFT is shown in Fig. 2.  
 

3 Computational Techniques  
  In this section, we describe a series of algorithmic and 
computational techniques that make our QMD engine scalable and 
achieve high FP performance. 

3.1 Divide Conquer Recombine 
We have proposed an extension of divide-and-conquer (DC) 

algorithm called divide-conquer-recombine (DCR) [11, 14, 15]. 
The DCR algorithm consists of two phases: DC and recombine. In 
the DC phase, the physical space is subdivided into spatially-
localized domains as in Fig. 1. These domains are embedded in a 
global field, which is computed efficiently using tree-based 
algorithms such as real-space multigrids. The DC phase constructs 
globally-informed local solutions, which, in the second recombine 
phase, are used as compactly-supported bases to synthesize a global 
solution encompassing large spatiotemporal scales. The recombine 
phase typically involves range-limited n-tuple computations to 
account for higher interdomain correlations that are not captured by 
the tree network topology used in the DC phase [27, 28]. 

 
Lean divide-and-conquer (LDC): For QMD, we have developed 

a LDC-DFT algorithm, which significantly reduces the prefactor of 
the O(N) computational cost based on complexity and error 
analyses. Specifically, LDC-DFT applies an adaptive boundary 
condition, which is proportional to the difference between local 
(𝜌)(�⃗�) = ∑ |𝜓,)(�⃗�)|5, ) and global (𝜌(𝑟)) electron densities, so as 
to minimize the contamination of local solutions at domain 
peripheries 𝜕Ω) [14]. 

 

Figure 2: Workflow of DC-DFT in O(N) QMD simulation to 
obtain Kohn-Sham eigenstates. Upon input of initial atomic 
positions and atomic velocities, first steps include making an 
initial guess for local charge density 𝝆𝜶(𝒓), and computation of 
the local Hamiltonian Hl for each domain, including kinetic 
energy T, exchange-correlation potential VXC, local potential VL 
and nonlocal pseudopotential VNL. Next, global charge density 
r(r) is computed and Hartree potential VH is obtained using 
multigrid method. SCF iteration is based on multiple 
convergence criteria. If criteria are met, atomic forces are 
computed using Hellmann-Feynman theorem and atomic 
positions and velocities are updated based on velocity Verlet 
algorithm. If criteria are not met, new SCF iteration is 
performed using a new charge density r¢(r) created by mixing 
old charge density and new guess.  

 
Globally scalable and locally fast (GSLF) solver: Our GSLF 

solver combines: (1) fast intradomain computation—FFT-based 
spectral method is used to obtain local KS wave functions 𝜓,)(�⃗�) 
with high numerical efficiency [29]; and (2) scalable interdomain 
computation—octree-based multigrids [30] are employed to solve 
Eq. (2) and obtain the global Hartree field 𝑉<(𝑟) from the global 
electron density 𝜌(𝑟) in a highly scalable manner on massively 
parallel computers. Use of plane-wave bases in spatially-localized 
domains is akin to the discontinuous Galerkin DFT method [31-
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33]. Here, it is further combined hierarchically with the multigrid 
method. 

 
Hybrid band-space-domain (BSD) decomposition: On parallel 

computers, we utilize hybrid parallelization. We first decompose 
the computation into those of different domains. For higher 
parallelism, we further employ band decomposition (i.e., assigning 
the calculations of different KS wave functions to different 
processors) and spatial decomposition (i.e., distributing real-space 
or reciprocal-space grid points among processors) within each 
domain. 

 

3.2 Algebraic Computational Transformation 
The numerical kernel of QMD is the solution of local KS 

equations (Fig. 2), i.e., iterative minimization of the energy as a 
functional of 𝜓,)(�⃗�) using the PCG method [2]. Our original QMD 
code used band-by-band PCG minimization, in which KS wave 
functions (or bands) are optimized one at a time sequentially in 
ascending order of KS energy. To take maximal advantage of the 
highly-optimized basic linear algebra subprograms (BLAS) library, 
we instead adopt an all-band approach, in which PCG minimization 
is performed simultaneously for all KS wave functions at once. The 
original band-by-band computation is expressed in terms of matrix-
vector operations using the DGEMV subroutine in level 2 BLAS 
(BLAS2). By combining all bands together into a matrix and 
operating the KS Hamiltonian at once, we transform the entire PCG 
minimization to BLAS3 matrix-matrix computations using the 
DGEMM subroutine. This exposes more parallelism and 
drastically increases the FP performance. We have formulated 
these computational transformations algebraically at the abstract 
level of governing equations. Consequently, key computational 
kernels such as nonlocal pseudopotential calculation are now 
performed solely as matrix-matrix operations using the DGEMM 
subroutine in BLAS3. Here, KS wave functions are 
orthonormalized using parallel Cholesky decomposition of the 
overlap matrix. While all-band PCG computation may have 
numerical-stability issues in very large systems, our approach 
applies it only in domain-by-domain fashion. Consequently, we 
have not encountered any stability issue. 

3.3 Performance Profiling and Code-Level 
Optimization 

To ensure optimal performance on target architecture platform, 
we performed performance profiling and code-level optimization 
of the QMD engine, called QXMD, for Intel-based architecture. To 
identify the most promising candidate subroutine for performance 
optimization, we first performed a hardware-mode hotspot 
profiling using Intel VTune Amplifier 2019. The profiling was 
performed on a compute node with dual 20-core Intel Xeon 
Scalable Gold 6,148 processors at NSTDA Supercomputer Center 
(ThaiSC). For the test configuration, we performed a SCF iterations 
on a 12-atom molybdenum ditelluride (MoTe2) system using 40 
MPI tasks. The profiled QXMD code was compiled with “-lm -
mkl=sequential -O3 -axCORE-AVX512 -qopt-report=5 -qopt-

report-phase=vec” flags, whereas the non-uniform memory access 
(NUMA) allocation and CPU binding were also enforced during 
runtime. Note that the -qport-report flag provides additional 
automatic vectorization information from compiler for every 
source files, which were subsequently used to analyze the degree 
and method of vectorization carried out by the compiler.  
 
Table 1: Hotspot profiling results. 

Subroutine CPU time 
(%) 

% of FP 
Ops 

% Vectorized 
FP Ops 

mbyv_p 18.8% 34.8% 0.9% 
precnp 9.7% 7.9% 7.2% 
cgrad 5.7% 54.8% 100.0% 
hcvand_g 5.0% 16.0% 99.3% 
rfft3 2.8% 1.8% 100.0% 

 
Table 1 shows the FP profile for the most time-consuming 

subroutines obtained from hotspot profiling result. Here, mbyv_p 
subroutine was the most time consuming (18.8% CPU time), 
whereas 99.1% of its FP operations were not vectorized. The other 
subroutines in Table 1 either contained small fraction of FP 
operations, or were already vectorized. Therefore, we focused our 
optimization on mbyv_p subroutine. 
 

 
Figure 3: 6-th order, 37-point stencil, whose footprint is 133 on 
a three-dimensional mesh. Blue, yellow and green colors show 
the x, y and z locations of memory in 3D space, respectively. 
Red color shows the target cell. 
 

The main function of subroutine mbyv_p is to calculate the 
Laplacian (i.e. second derivative) of a scalar variable on a three-
dimensional mesh in the finite-difference (FD) approximation, 
which is mainly used to solve Poisson equation to obtain Hartree 
field in the entire space. The operations in mbyv_p can be expressed 
as the multiplication between a sparse matrix A and a vector x. Here, 
the QMD code utilizes high-order stencil computation (Fig. 3) to 
solve the FD approximation. To better understand the computing 
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characteristics of this subroutine, we further performed an in-depth 
performance profiling using HPC performance characterization 
mode. The result showed that 48.6% of pipeline executions within 
the main stencil computation kernel in mbyv_p was stalled, of 
which 19.9% specifically originated from L1 miss/L2 hit stalls.  

 

Figure 4: Memory access pattern of register blocking compared 
to the naïve access pattern of stencil computation. In the naïve 
stencil kernel (a), red block signifies target grid point, while 
blue, yellow and green blocks show locations in memory space 
of the stencil in x, y and z directions, respectively. On the other 
hand, CRB algorithm (b) targets on a chunk of grid points in x-
stride rather than a single grid point as in naïve algorithm, 
thereby optimally utilizing register and data cache. 
 

To improve the performance of the stencil-computation kernel in 
mbyv_p, we employ a cache and register-blocking (CRB) algorithm 
[34], which improves the high-order stencil performance by 
reducing the computation and memory access of the high-order 
strides (e.g., y-stride and z-stride). The CRB algorithm packs y- and 
z-strides data into aligned nBlock chunk and processes them at once 
(see Fig. 4), thereby improving data reuse within the cacheline in 
y- and z-strides, increasing the vectorization and reducing 
redundant micro-operations.  
 

4 Benchmark Tests 
Numerical tests are performed on Intel Xeon Phi Knights 

Landing (KNL) based supercomputer [35] named Theta at Argonne 
Leadership Computing Facility (ALCF). Theta consists of 24 racks 
totaling 4,392 Intel Xeon phi nodes. Each node has 64 physical 
cores. Each core operates with 32 KB L1 instruction cache, 32 KB 
L1 data cache with two independent floating points operation units 
capable of executing 512-bit wide SIMD instruction set. Each tile 
consists of two cores and a shared 1MB L2 cache. Tiles are 
connected by 2D mesh networks-on-chips. Each node also supports 
16 GB high bandwidth in-package multichannel DRAM memory 
(MCDRAM) and 192 GB DDR4 memory. There are three memory 
mode supported on Intel Xeon Phi. One of the cache mode, flat 
mode and hybrid mode is selected at booting. In cache mode, 
MCDRAM is used as a cache to DRAM; while in flat mode, both 
MCDRAM and DRAM operates as a single linear memory space. 
Hybrid mode allows us to choose part of MCDRAM as cache and 

the remaining memory space as linear memory space. Following 
benchmarks are performed in cache mode [36]. 

4.1 Weak and Strong Scaling on Theta  
Weak scaling on Theta: We performed a weak-scaling 

benchmark of the QMD code on Theta, in which the number of 
atoms per core N/P is kept constant. We measured the wall-clock 
time per QMD simulation step with scaled workload—216P-atom 
MoTe2 system on P cores of Theta. In this test, we set the number 
of domains to be P. The execution time includes 3 SCF iterations 
to determine the electronic wave functions and the global density, 
with 3 PCG iterations per SCF cycle to refine each wave function. 
By increasing the number of atoms linearly with the number of 
cores, the wall-clock time remains nearly constant, indicating 
excellent scalability. To quantify the parallel efficiency, we first 
define the speed of the QMD code as a product of the total number 
of atoms and the number of QMD simulation steps executed per 
second. The isogranular speedup is given by the ratio of the speed 
on P cores to that on 512 cores as a reference system. The weak-
scaling parallel efficiency is the isogranular speedup divided by 
P/512 (Fig. 5). With the granularity of 216 atoms per core, the 
parallel efficiency remains nearly unity, as shown in Fig. 5, within 
measurement fluctuation up to P = 261,144 for a 56,623,104-atom 
MoTe2 system. This result demonstrates a high scalability of the 
QXMD code. 

 
Figure 5: Weak-scaling parallel efficiency of the parallel 
QXMD code based on LDC-DFT algorithm, with scaled 
workloads — 216P- atom MoTe2 system on P Intel KNL cores 
(P = 512, ..., 262,144) of Theta. 

 
Figure 5 exhibits an network-interference pattern observed in 

earlier study [37]. Theta employs dragonfly network based on the 
Cray Aries technology [38]. Aries is a system-on-chip device that 
consists of four network interface cards (NICs) via 16x PCI-
Express Gen3 interface connecting the KNL nodes and a 48-port 
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router tile with 4.7-5.25 GB/s optical and electrical bidirectional 
links. A dragonfly network topology can be seen as a two-level all-
to-all mesh network between computing node groups. The cost-
effective electrical link is used to connect the NICs to other local 
routers in a cabinet and the optical links serve as global interconnect 
across cabinets. Theta system consists of 20 cabinets in total, 192 
KNL nodes via 48 Aries chips per cabinet realizing a high-
bandwidth and low-diameter network for a wide range of 
applications [39]. A number of benchmarks on dragonfly network 
have shown that the communication performance is highly 
dependent on job-placement strategy, data routing policy and the 
intensity of data transfer of each application, resulting in variations 
in their performance [37]. The degree of shared links among 
concurrent jobs is an important factor to avoid performance 
degradation caused by interference between multiple jobs. 

 
Figure 6: Wall-clock time of QMD with a fixed workload — 
7,077,888-atom MoTe2 system on P cores (P = 512, ..., 262,144) 
of Intel KNL cores.  
 

Strong scaling on Theta: Next, we performed a strong-scaling 
test by simulating a MoTe2 system containing a total of 7,077,888 
atoms. In this test, the number of cores ranges between P = 32,768 
and 262,144, while keeping the total problem size constant. Figure 
6 shows the wall-clock time per QMD simulation step as a function 
of P. The time-to-solution is reduced by a factor of 4.4 on 262,144 
cores compared with the 32,768-core run (i.e., using 8-times larger 
number of cores). The corresponding strong-scaling parallel 
efficiency is 55%. It is more difficult to achieve high strong-scaling 
parallel efficiency compared with weak-scaling parallel efficiency. 
This is due to the surge of communication/computation ratio as the 
workload per rank shrinks proportionally. This is partly understood 
by analyzing the parallel efficiency 𝜂 as a function of the number 
of cores P and that of atoms N. For the weak-scaling parallel 
efficiency with constant granularity ( 𝑛 = 𝑁/𝑃 ), 𝜂 = 1/[1+

𝛼𝑛P
Q
R + 𝛽𝑛PTlog𝑃] , exhibiting a very weak logarithmic 

dependence on P. For the strong-scaling parallel efficiency with 

constant N, in contrast, 𝜂 = 1/[1+ 𝛼 YZ
[
\
PQR + 𝛽𝑁PT𝑃log𝑃] , 

which exhibits much stronger power dependence on P. With 8-
times smaller system size of the weak-scaling test, the observed 
strong-scaling efficiency is considered decent. 

 

4.2 Performance Tests  
To test the effects of various performance-optimization 

techniques described in Sec. 3, we measured the cumulative 
performance improvement of our optimized code (named QXMD-
G-CRB) with respect to the original code. The notation of our codes 
is as follows. Nonlocal-pseudopotential calculation performed in 
momentum space is labeled QXMD-G, whereas calculation in real 
space is labeled QXMD-R. Algebraic transformation with 
inclusion of BLAS, and calculation of non-local potential in 
momentum space is labeled QXMD-G-BL, and the code 
implementing calculation of non-local potential in momentum 
space, algebraic transformation and register/cache blocking is 
labeled QXMD-G-CRB. The test was performed on Intel Xeon Phi 
cores of Theta with MoTe2 system containing 192 atoms. Figure 7 
shows that nonlocal pseudopotential calculation performed in real 
space (QXMD-R) is faster than that in reciprocal space (QXMD-
G). However, calculation in real space resulted in small errors using 
equivalent computational parameters. From our optimization, we 
have achieved a cumulative 5x speedup with respect to QXMD-G 
and 2.5x speed with respect to QXMD-R, while avoiding the error 
associated with the real-space formalism. Furthermore, with 
increased number of cores, speedup obtained remained almost 
constant, suggesting a scalable speedup. 
 

    
Figure 7: Performance comparison of the QMD code before 
optimization (QXMD-G, QXMD-R) and after optimization 
with nonlocal pseudopotential calculation in momentum space 
(QXMD-G-CRB) for the number of cores ranging from 64 to 
256. 



Quantum Dynamics at Scale HPC Asia 2020, January 2020, Fukuoka, Japan 
 

 

 
To further delineate the effect of algebraic transformation from 

that of machine-level optimization, we compared the performance 
of QXMD-G-BL and QXMD-G-CRB codes on Intel Xeon Phi 
processors and dual 20-core Intel Xeon Scalable Gold 6,148 
processors with 12-atom MoTe2 system.  

 

 
Figure 8: Performance of QMD codes before (orange) and after 
(green) machine-level performance optimization on Intel Xeon 
Phi (a) and Intel Xeon Scalable Gold 6,148 processors (b).  

 
Figure 8 compares runtime of the QMD code before (QXMD-G-

BL) and after CRB optimization (QXMD-G-CRB) with varying 
numbers of cores. In addition to Theta, we have also performed the 
same test on another platform to assess the portability of our 

performance-optimization techniques. Figure 8a shows that we 
have gained 13-18 % improvement with CRB optimization on Intel 
Xeon Phi KNL cores, consistently for P=16-64 cores. For example, 
runtime per SCF iteration decreased from 1.14 s to 0.96 s on 32 
cores. Similarly, Fig. 8b shows runtime of the code before and after 
CRB optimization on Intel Xeon Scalable gold 6,148 processors. 
Runtime before CRB optimization [15] is 1.09, 0.96 and 1.26 s, 
respectively, on 10, 20 and 40 cores. On the other hand, runtime 
after CRB optimization decreased to 0.98, 0.85 and 1.09 s on 10, 
20 and 40 cores, respectively, which amount to 11-16% speedup. 
In terms of the number of cores used, the shortest runtime was 
observed on 20 cores. This is likely due to the MPI synchronization 
on the dual 20-core processors. 

 
To identify the source of performance improvement, we 

compared the profiling results for memory and computing 
characteristics of the QMD code before and after optimization. 
First, we found that the character of FP operations in mbyv_p was 
improved from no vectorization to fully AVX(256)/FMA(256) 
vectorized after optimization. As a result, the computing time spent 
in mbyv_p subroutine was reduced by 39.0%, and the number of 
memory-load instructions was significantly reduced by 65.0%. 
These improvements are directly associated with the improvement 
of computing pattern and memory alignment of CRB scheme 
within the stencil kernel. In terms of memory access, we found that 
cache hit/miss profiles are similar before and after optimization. 
We suspect that this is due to the relatively small mesh size such 
that it could not benefit adequately from improved memory layout. 

 

5 APPLICATION  
Our scalable, performance optimized QMD code provides new 

capabilities to study nontrivial excitation dynamics in material 
systems of experimentally relevant length scales. To demonstrate 
this new functionality, we model the excited-state dynamics of 
monolayer WSe2 crystals supported on alumina (Al2O3) substrates. 
WSe2 is an atomically thin layered material belonging to the class 
of transition-metal dichalcogenides (TMDC), which are being 
actively investigated for their high carrier mobility and valley- and 
spin-dependent optical and electronic properties not observed in 
their 3D counterparts. This makes them suitable for tunable 
semiconducting to metallic structural phase change materials and 
synthesis of new materials with remarkable functionality. 
Photoresponse of these material systems is an ongoing topic of 
interest owing to its potential in enabling optically-induced material 
functionalization and structural transformations [40]. Non-trivial 
photo-induced dynamics of a WSe2 monolayer on alumina was 
recently demonstrated in XFEL experiments [8]. However, the lack 
of computational resources has constrained QMD simulations to 
the study of only suspended crystals (i.e. no substrate) and therefore 
the effect of substrate on photodynamics remains to be understood.  
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Figure 9: (a-d) Schematics of four atomic systems (0L, 0.5L, 1L, 3L) used to study the influence of dielectric substrate thicknesses on 
the photodynamics of the supported WSe2 monolayer. (e) The measured center of mass of the lower plane of Se atoms is independent 
of the thickness of the substrate. (f) Discrete Fourier transform of the atomic displacements of the Se atoms in the in-plane (i.e. x-y) 
directions shows that the substrate does not modify the frequency of the dominant mode of lattice vibrations. 

 
We use our DCR-QMD program to understand excited-state 

dynamics of WSe2 on alumina (001) surface. In order to 
systematically study the substrate effect, we consider 4 distinct 
systems (Fig 9, a-d) – an unsupported WSe2 monolayer with no 
substrate (a), WSe2 supported on an Al2O3 (001) surface that is 0.5 
unit cells thick (b), WSe2 supported on 1-unitcell-thick Al2O3 (c) 
and WSe2 supported on a 3-unitcell-thick Al2O3 substrate (d) that 
approximates the behavior of an infinitely thick substrate. Systems 
are labeled based on the thickness of substrate, such as system with 
no substrate is labeled 0L and systems with 0.5, 1.5 and 3 unit cells 
of the Al2O3 substrate are respectively labeled 0.5L, 1L and 3L. The 
largest system considered in this study (3L) contains 1,014 atoms. 
All the systems were first relaxed to the ground state. After 
relaxation, we perform excited-state dynamics by promoting 
electrons to the unoccupied orbitals by manually modifying the 
occupancy of the Kohn-Sham eigenlevels according to a Fermi 
distribution at high temperatures. We studied excitation dynamics 
up to 2 ps. 

 
The inclusion of the Al2O3 substrate breaks the symmetry 

between the two Se atomic planes resulting in two different type of 
Se atoms. The lower plane of Se atoms closer to the substrate are 
denoted as SeL, whereas the upper plane of Se atoms further away 

from the surface are denoted as SeU. There is no anisotropy in the 
atomic dynamics of the SeU and SeL planes, indicating a weak 
influence of the substrate on the atomic dynamics. While the 
magnitude of atomic displacements decreases between 0L to 3L 
systems, there is no measurable variation in the average center of 
mass of the SeL plane as a function of time in the presence of the 
substrate (Fig. 9e). Further, the dominant vibrational frequency for 
the SeL atoms is unaffected by the presence of the substrate. We 
also performed discrete Fourier transformation of mean square 
displacement in x-y plane as shown in Fig. 9f. Once again, the weak 
influence of the substrate is manifested in the lack of modulation in 
the peak at 240 cm-1 (±13 cm-1) corresponding to active 𝐸5 Raman 
mode. 

 
These results, along with the minimal charge transfer between 

alumina substrate and WSe2 materials, suggest the relatively weak 
influence of the substrate on photodynamics in TMDC materials. 
While dielectric substrates have been found to drastically modify 
electronic properties of TMDC LMs like band gap [41], effect on 
excitation dynamics involving both electrons and atoms are minor 
on substrate [8].  
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6 CONCLUSION 
We have developed a series of algorithmic and computational 

techniques to speed up our linear-scaling quantum molecular 
dynamics simulation code based on divide-and-conquer density 
functional theory. The improved code on an Intel Xeon Phi KNL-
based supercomputer allowed us for the first time to reveal essential 
effects of dielectric substrate on photo-induced dynamics involving 
electrons and atoms. Quantitative understanding enabled by such 
quantum@scale will be catapulted to the next level on the exaflop/s 
A21, likely filling fundamental knowledge gap in more complex 
functional materials such as magic-angle twisted LMs [42] and 
emergent phases such as polar Skyrmions [43]. 
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