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Vibrational and thermodynamic properties of TATB have been investigated within the quasiharmonic
approximation and density functional theory using three exchange-correlation functionals: local den-
sity approximation (LDA), generalized gradient approximation (GGA), and GGA with an empirical
van der Waals correction (GGA + vdW). We find that GGA provides a reasonable description of only
the heat capacity and thermal expansion, while it fails to reproduce the experimental bulk modulus
and volume. Van der Waals correction improves the lattice constants, volume, and bulk modulus,
but it fails badly in describing thermal expansion and heat capacity. In contrast, LDA accurately
describes all the thermodynamic properties of TATB considered here. For example, the equilibrium
volume calculated with LDA is only 4.6% smaller than the experimental value after including vi-
brational contributions. It is therefore essential to include phonon contributions when comparing the
calculated volume with experimental data at ambient conditions. We show that an accurate equa-
tion of state of TATB is obtained by simply multiplying the volume calculated with LDA by a factor
of 1.046, because LDA predicts the bulk modulus well in the entire pressure range. Therefore, LDA
is a satisfactory exchange-correlation functional for TATB because only LDA correctly predicts the
volume dependence of vibrational frequencies. All calculations exhibit an abrupt change of the com-
pressibility at a critical pressure, P, ~ 0.5-1.0 GPa. Below P., the volume reduction by pressure is
mainly due fo the lattice contraction along the ¢ axis, whereas above P, the lattice contracts signifi-
cantly along all three axes.
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1. INTRODUCTION

1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is an important molecular crystal widely
used in high-performance energetic applications. Its remarkable stability under ther-
mal, impact, and shock-initiation conditions (Dobratz, 1995; Travis, 1992), as well as
its nonlinear optical properties (Ledoux et al., 1990; Son et al., 1999; VoigtMartin et
al., 1996; VoigtMartin et al., 1997), have stimulated numerous studies (Makashir and
Kurian, 1996; Becuwe and Delclos, 1993; Osmont et al., 2007; Agrawal, 2005; Boddu
etal., 2010; Bourasseau et al., 2011; Boyer and Kuo, 2007; Budzevich et al., 2010; Byrd
and Rice, 2007; Cady and Larson, 1965; De Lucia et al., 2003; Deopura and Gupta, 1971;
Dobratz, 1995; Fedorov and Zhuravlev, 2014; Fell et al., 1998; Filippini and Gavezzotti,
1994; Fried and Ruggiero, 1994; Grebenkin and Kutepov, 2000; Huang et al., 2014; Kolb
and Rizzo, 1979; Kroonblawd and Sewell, 2013; Kunz, 1996; Liu et al., 2011; Losada
and Chaudhuri, 2009, 2010; Lurnan et al., 2007; Chevalier et al., 1993; Talawar et al.,
2006; Mang and Hjelm, 2013; Margetis et al., 2002; McGrane et al., 2005; McGrane
and Shreve, 2003; Olinger and Cady, 1976; Pravica et al., 2009; Price, 1988; Qian et
al., 2014; Toghiani et al., 2008; Rosen and Dickinson, 1969; Satija et al., 1991; Sewell,
1997; Shan et al., 2014; Son et al., 1999; Stevens et al., 2008; Willey et al., 2009; Tay-
lor, 2013; Thadhani, 1994; Towns, 1983; Traver, 2010; Vergoten et al., 1985; Wu and
Fried, 2000; Yetter et al., 1995; Huang et al., 2005; Zeman, 1993; Zhang et al., 2012a,
2012b, 2009). For example, these studies measured thermodynamic properties such as
thermal expansion at ambient pressure (Kolb and Rizzo, 1979) and equation of state at
room temperature (Kolb and Rizzo, 1979; Stevens et al., 2008), and vibrational proper-
ties such as Raman and infrared spectroscopy (Deopura and Gupta, 1971; Satija et al.,
1991; Towns, 1983; Vergoten et al., 1985). Although the stability of TATB is usually
attributed to its significant inter- and intramolecular hydrogen bonding (Dobratz, 1995),
the underlying atomistic mechanisms are still unclear. Detailed structural, vibrational,
and thermodynamic properties are indispensable for understanding the atomistic origin
of the unusual properties of TATB crystal.

Extensive theoretical studies on TATB crystal have been conducted using empirical
interatomic potentials (Bedrov et al., 2009; Gee et al., 2004; Pastine and Bernecker,
1974; Rai et al., 2008; Sewell, 1996) or electronic-structure calculations (Byrd et al.,
2007; Grebenkin and Kutepov, 2000; Kunz, 1996; Liu et al., 2007; Budzevich et al.,
2009; Oleynik et al., 2007; Wu and Fried, 2000; Zhu et al., 2009) based on the density
functional theory (DFT) and Hartree-Fock method. The interatomic potentials describe
the crystal structure and bulk modulus at ambient conditions accurately because their
parameters are fitted to reproduce experimental data. Furthermore, these potentials have
been shown to predict TATB properties at high pressures and temperatures reasonably
well (Bedrov et al., 2009; Gee et al., 2004; Rai et al., 2008). In contrast, nonempirical
electronic-structure calculations usually have considerable errors in crystal properties of
TATB (Byrd et al., 2007; Liu et al., 2007; Wu et al., 2003) and other molecular crystals
(Byrd et al., 2007; Byrd et al., 2004; Conroy et al., 2008a, 2008b; Qiu et al., 2006;
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Shimojo et al., 2010; Wu et al., 2011; Zhao and Liu, 2008). For example, the generalized
gradient approximation (GGA), which is a commonly used exchange-correlation (xc)
functional in DFT calculations, tends to overestimate the equilibrium volume of TATB
by 20~30% (Byrd et al., 2007; Liu et al., 2007), while another popular xc functional,
the local density approximation (LDA), underestimates it byx18% (Byrd et al., 2007;
Liu et al., 2007; Wu et al., 2003). Such failure of DFT is often ascribed to its inadequacy
in describing the dispersion interaction. As a result, there is great interest in improving
GGA calculations by incorporating van der Waals (vdW) corrections (Dion et al., 2004,
Grimme, 2004; Shimojo et al., 2010; Tkatchenko et al., 2010; Tkatchenko and Scheffler,
2009). Another essential issue is the effect of phonons on the thermodynamic properties
of molecular crystals. Although the phonon effect on the equilibrium volume is small
(about 1-2%) for crystals with larger bulk moduli (Karki et al., 2000; Li et al., 2007;
Mounet and Marzari, 2005; Pavone et al., 1993; Sun et al., 2008; Wentzcovitch et al.,
2010; Wu and Wentzcovitch, 2007; Wu et al., 2008; Yu and Wentzcovitch, 2006), this
effect can be very large for energetic crystals, which exhibit large thermal expansion.
Recently, we reported a detailed investigation of vibrational and thermodynamic
properties of thgs-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) crystal with
LDA, GGA, and GGA with an empirical van der Waals correction (GSAIW) (Mat-
sui et al., 2012). We found that phonons significantly increase the equilibrium volume
(by more than 5%). LDA predicts the ambient volume to be only 6% less than the exper-
imental value after including the vibration contribution. Most importantly, LDA accu-
rately predicts other thermodynamic properties such as the bulk modulus, heat capacity,
and thermal expansion. In contrast, GGA only predicts the heat capacity and thermal
expansion well, and produces large errors in the bulk modulus and volume. Although
an empirical vdW correction to GGA was found to improve the volume and bulk modu-
lus, the GGArvdW calculation fails badly in predicting the thermal expansion and heat
capacity. Therefore, contrary to the common belief, LDA is a rather good xc functional
for -HMX. In order to clarify whether these observations also hold for other energetic
crystals, here we study the vibrational and thermodynamic properties of the TATB crystal
in the framework of DFT with three xc functionals—LDA, GGA, and GG¥dW—to
identify the best functional. The other main purpose of this paper is to provide detailed
thermodynamic properties of TATB at high temperatures and pressures based on DFT
with the best functional thus identified, which are not available in literature to the best
of our knowledge.

2. CALCULATION DETAILS

The calculations are performed using pwscf and phonon programs of the Quantum
Espresso software for DFT calculations based on the plane-wave basis and pseudopo-
tentials (Giannozzi et al., 2009). The plane-wave cutoff enefgy;§ of 30 Ry is found
sufficient to obtain the converged results. Brillouin-zone summations over electronic
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states are performed over &2 x 2 (2 points)k mesh with a (1/2, 1/2, 1/2) shift from
the origin. The Vanderbilt ultrasoft pseudopotentials are generated for C, N, H, and O
(Vanderbilt, 1990). For the exchange-correlation functional, we use LDA (Ceperley and
Alder, 1980; Perdew et al., 1981) and GGA by Perdew, Burke, and Ernzerhof (PBE)
(Perdew et al., 1996).

Van der Waals correction is included using Grimme’s DFT-D2 methodology (Gri-
mme, 2004, 2006). The empirical dispersion correction for the energy is given by

Cij
Edisp = —S6 Z Ri(;]fdamp(Rij) (1)

i<j i

whereC;; andR;; denote the dispersion coefficient and the interatomic distance between
thedth andjth atoms, andg is a global scaling factor that only depends on the density
functional used. A damping functiofy,,,,, is introduced to ensure that the dispersion
correction is negligible for smak;;.

Structural optimizations, with and without the vdW correction, are achieved using
the damped variable cell shape molecular dynamics method (Wentzcovitch, 1991). For
each fully optimized structure, dynamical matrices are computed on222 q (wave
vector) mesh based on the density functional perturbation theory (DFPT). The dynamical
matrices (Baroni et al., 2001) are modified by incorporating the vdW contribution if the
structure has been optimized with the vdW correction. The results are then interpolated
in a regular 8x 8 x 8 g mesh to obtain the vibrational density of states.

The Helmholtz free energy in the quasiharmonic approximation (QHA) is given by

F(V,T) = Uo(V) +5 3 heo;(a, V) + knT Y Inf1 —expl-had; (g, V) /ksT]} (2

qJ

whereg is a wave vector in the first Brillouin zongjs an index of the phonon mode with
frequencyw;(q, V'), V andT are the volume and temperature of the system kgnand

h are the Boltzmann and Planck constants. The first, second, and third terms in Eq. (2)
are the static internal, zero-point, and vibrational energy contributions, respectively. The
calculated Helmholtz free energy versus volume is fitted by the Birch-Murnaghan third-
order finite strain equation of states, which in turn is used to derive thermodynamic
properties.

3. RESULTS AND DISCUSSION

3.1 Lattice Structure

The structure of the TATB crystal is shown in Fig. 1. The unit cell of TATB is triclinic
with space group”1. Each unit cell has two TATB molecules. TATB crystal is highly
anisotropic with planar molecules, whose planes are nearly parallel i@ fhlane. The
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FIG. 1. (a) TATB crystal structure projected along the [001] axis. For clarity of pre-
sentation, only the top molecules in the unit cells are shown, namely, for atoms with
0.5< z < 1.0, wherez is the coefficient for the basic vector along thkattice vector.
Intramolecular and intermolecular hydrogen bonds are displayed with green solid lines
and dashed lines, respectively. (b) TATB crystal in the primitive cell. Carbon, nitrogen,
oxygen, and hydrogen atoms are shown in black, blue, red, and green, respectively.

interaction between different planes is dominated by vdW interaction, while the inter-
molecular interaction within theb plane mainly results from the hydrogen bonds (see
green solid and dashed lines in Fig. 1). The anisotropy in TATB structure is clearly re-
flected in the errors of the lattice parameters by DFT calculations (see Table 1). The
errors ofa andb are far smaller than those effor both GGA and LDA. LDA calcula-
tions predictz andb quite well but have a significant error inGGA calculations show
significant errors in all directions but have a dominant erret iFhese features on lattice
parameters in the LDA and GGA calculation are consistent with previous calculations
(Byrd et al., 2007; Liu et al., 2007). In particular, GGA static calculation overestimates
the equilibrium volume by 27%, which clearly indicates that GGA is inadequate in treat-
ing vdW interaction. (Note that the interaction between different TATB planes along the
c axis is dominated by vdW interaction as explained above.) The empirical vdW cor-
rection dramatically reduces the errors in the lattice parameters using GGA, which is
consistent with previous works (Budzevich et al., 2010; Landerville et al., 2010). The
equilibrium volume using GGAvdW is only 0.9% smaller than the experimental value.
Budzevich et al had indicated anisotropic behavior of TATB under uniaxial com-
pressions (Budzevich et al., 2010). The variations of the lattice parameters of the TATB
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TABLE 1: Lattice parametersu( b, ¢, «, 3, v), volume (), and bulk modulusKr)

of TATB crystal at a pressure of 0 GPa. Both static (without phonon contributions) and
QHA calculations within the framework of DFT using LDA, GGA, and GG®dW
functionals are shown, along with the corresponding experimental data. The numbers in
parentheses are deviations from the experimental value in percentage

aP)|bA) [cB)| x() [BO)|Y() [VAY]  Kr(GPa)
8.864| 8.881/6.373108.6792.17/120.00 399.6 .
(-1.6) (-1.6)|(-6.4)| (0.1) | (0.4)| (0.0) | (=9.6) 197 LDA (static)
8.939/8.954| 6.641| 107.8/92.08 120.0| 422.3 118 LDA (300
(-0.7)/(-0.8)|(-2.5) (-0.7)| (0.3) | (0.0) | (4.6) ' K)
9.307|9.324]7.894/105.1G92.29/120.11 560.1 04 GGA
(3.3)| (3.3)[(15.9) (=3.2)| (0.5)| (0.1) | (26.6) ' (static)
9.346/9.361]8.226/104.3(92.27/120.14 591.6 138 GGA*
(3.7)| (3.7) |(20.8)| (-4.0)| (0.5)| (0.1) | (33.7) ' (300 K)
9.103/9.131/6.634/109.0792.11{119.92 438.3 171 GGA+vdwW
(1.0)| (1.1)|(~2.6)| (0.4) | (0.3)| (0.0) | (-0.9) ' (static)
9.138/9.162[6.740/108.8192.06(119.94 449.6 12,86 GGA-+vdW
(1.4)| (1.4)|(-1.0) (0.2) | (0.2)| (0.0) | (1.6) ' (300 K)
13.6~ 16.7 Expt.
(Olinger and Cady, (Olinger
9.010/9.028/6.812/108.5991.82119.97 4425 | oo Ca dy,
al., 2008) 1976)

*The effect of zero-point motion to the volume is ignored in order to avoid the extrapo-
lation.

crystal under pressure also exhibit a large anisotropy. LDA, GGA, and-8@% cal-
culations all show the same feature that the anisotropy decreases abruptly at a critical
pressure. Results from the GGA calculation are shown in Fig. 2. Note @wadb have

nearly identical dependencies on the pressure, which is consistent with previous works
(Budzevich et al., 2010). There is a sudden change in the compression ratia ahd

¢, which is defined af\a/a:Ab/b:Ac/c, at about 0.5 GPaXa, Ab, and Ac are the
reduction ofa, b, ande¢, respectively, compared with their zero-pressure values). Be-
low 0.5 GPag andb change much more slowly with pressure tlaithe compression

ratio along then, b, andc axes is about 1.0:0.94:9.7. The compression is one or-

der of magnitude larger than thatdnandb. Volume reduction by pressure thus arises
mainly from the variation ot at low pressures. Above 0.5 GRaandb change much

more rapidly with pressure than they do at low pressures. The compression ratio is about
1:1:1.95, which indicates that the variationfaindb also makes a significant contri-
bution to volume reduction at pressures higher than 0.5 GPa. LDA calculation exhibits
the same feature, though with a higher critical presstte0 GPa. The compression
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FIG. 2: The variation of (a) lattice constanisandb and (b) the lattice constantunder
compression calculated with the GGA.

ratio calculated by LDA is 1:1.04:5.92 and 1:0.99:2.79, respectively, below and above
1.0 GPa.

3.2 Vibrational and Thermodynamic Properties

The vibrational properties of TATB crystal at zero pressure are listed in Table 2 for
Raman modes and Table 3 for infrared modes. The dependence of the calculated vibra-
tional properties on the xc functional is similar to thaf3irHMX (Matsui et al., 2012).
For phonon modes with frequency8000 cnt !, the LDA predicts a smaller frequency
than the GGA. But for the other modes except a few, frequencies from the LDA are
always larger than those from the GGA. This is consistent with the fact that the LDA
predicts the equilibrium volume to be 36% smaller than the GGA. Despite the large vol-
ume difference between the LDA and GGA calculations, the corresponding frequency
difference is small for modes with frequensyt000 cnt!. Both the LDA and GGA re-
sults agree well with the experimental data for these modes (Deopura and Gupta, 1971,
Satija et al., 1991; Towns, 1983; Vergoten et al., 1985). However, for the modes with
frequency<300 cnt!, the LDA and GGA results differ significantly, with the LDA re-
sults more consistent with the experimental data. The difference between the GGA and
GGA+vdW calculations arises from: (1) the reduction of the equilibrium volume at O
GPa by 28% due to the vdW effect; and (2) the vdW corrections on the force constants.
These effects are negligible for high-frequency modes but are significant at low frequen-
cies. The GGA-vdW results are more consistent with the experimental data than the
GGA results.

The mode Giineisen parametes; , describes how the phonon frequency depends on

the volume and is critical to the computation of thermodynamic properties. It is defined
as
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Jln Wi q

Vi = Ty ©)
wherei is the mode index and is the wave vector in the reciprocal space. (Note that
there is no thermal expansion within the harmonic approximation beagyse- 0.)
The calculated mode @neisen parameters in TATB crystal have the same features as
those inB-HMX A (Matsui et al., 2012)y; values are given in Tables 2 and 3 fp= 0
(gamma point), which clearly depend on the mode frequency. For high-frequency modes,
;i is close to zero because the lengths of strong molecular bonds in the molecular crystal
are not sensitive to the volume change. On the contrary, low-frequency modes usually
havey; values much larger than 1. Tables 2 and 3 also list the integratipnafer the
first Brillouin zone: yiad

_ Yi,q q
Yis g (4)

High-frequency modes in some way are like Einstein modes, andhthaitdy; values
are close to each other, since their frequencies are almost independent of wave.vector
For low-frequency modes, LDA and GGA calculations exhibit vastly different behaviors.
vi andy; calculated by LDA are not much different, which means that the gamma-point
(¢ = 0) valuey; is a good representation of the integratiorypf over the first Brillouin
zone. In contrasty; is only aboutl /4 ~ 1/2 of y; in the GGA calculations. Therefore,
thermodynamic properties derived from GGA calculations using only the gamma point
are not reliable. The vdW correction increage®nly slightly and does not change the
major feature thay; is far smaller thary;.

In GGA calculations, we obtain two imaginary modes at gamma point at 0 GPa,
whose frequencies appear as negative values in Table 2. At higher pressures, the imag-
inary modes disappear. The imaginary modes from GGA cause a problem in the calcu-
lation of thermodynamic properties using QHA, see Eq. (2). However, both modes are
imaginary only for a narrow range gfvalues around the gamma point. The contribu-
tion of the imaginary frequencies to the phonon density of states (PDoS) is negligible.
Furthermore, these imaginary modes may become stable after including phonon-phonon
interactions, since the triclinic TATB is stable at ambient condition. Therefore, it is rea-
sonable to calculate thermodynamic properties of TATB using QHA by ignoring the
two imaginary frequencies. Although the proportion of PDoS of the imaginary frequen-
cies to that of all frequencies is very small, it increases with the volume. Consequently,
the calculated thermodynamic properties become less reliable above a certain volume.
Note that the zero-point motion [second term in Eq. (2)] increases the volume by about
3% but has a small effect on thermodynamic properties. By ignoring this term, we can
thus obtain more reliable thermodynamic properties. Accordingly, the volume differ-
ence between the static and 300 K GGA calculations arises solely from the temperature
contribution; see Table 1.

Thermal expansion of TATB crystal calculated with the LDA, GGA, and GGA
vdW functionals is compared with experimental data in Fig. 3. The GGA and LDA
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FIG. 3: (a) Thermal expansion of TATB at 0 GPa. Experimental data are obtained by fit-
ting the volume vs temperature data by Kolb and Rizzo (1979). (b) Relative volume vari-
ation with temperature, whefié(7T') is the volume at temperatuie Experimental data

are taken from Kolb and Rizzo (1979). Results from the LDA, GGA, and G@dW
calculations are shown.

calculations predict nearly the same thermal expansion below 150 K. Above 150 K, the
thermal expansion in GGA increases rapidly and exhibits a superlinear behavior, which
is likely due to the omission of anharmonic effects in QHA (Matsui et al., 2012). The
experimental data in Fig. 3, which are obtained by fitting the measured volume vs tem-
perature data in Kolb and Rizzo (1979) are located between the LDA and GGA results.
As mentioned in Sec. lll-A, the compression ratio amang, andc calculated by GGA
is 1:0.94:9.7 below 0.5 GPa. Consequently, the linear coefficient of the thermal expan-
sion of thec axis is almost 10 times that of ttheaxis according to the constrained QHA
(Carrier et al., 2007), which assumes that the lattice parameters only depend on the vol-
ume. [This assumption was shown to work well for Mggi@arrier et al., 2007)]. The
result is consistent with the experimental data, which indicate that the relative expansion
of thec axis is about 12 times that of tlieaxis. This suggests that the constrained QHA
can also be applied to molecular crystals such as TATB. The LDA calculation predicts
that the relative expansion of thexis is about 6 times that of thbeaxis, since the com-
pression ratio along, b, andc from LDA is 1:1.04:5.92 below 1 GPa, which is slightly
smaller than the experimental data. Both the LDA and GGA results show thaizihe
b axes have almost the same linear coefficients of thermal expansion, which does not
agree with the Kolb and Rizzo (1979) experimental results that the relative expansion of
theb axis is about 3 times of that of theaxis but is consistent with the recent measure-
ment by Sun et al. (2010). The vdW correction makes the thermal expansion of TATB
much smaller than the GGA result and worsens the agreement with the experimental
data (Kolb and Rizzo, 1979).

Similar to the cases of other energetic molecular crystals sughHgIX (Matsui
et al., 2012), the phonon contribution to the equilibrium volume is remarkably large in

\Volume 14, Number 6, 2015



536 Wu et al.

TATB compared to nonmolecular crystals. As shown in Table 1, the equilibrium volume
increases about 7% (5%) when phonon effects are included with GGA (LDA). Based on
our results on TATB an@-HMX and similarly large thermal expansion of other ener-
getic materials such as RDX (Cady, 1972), PETN (Cady, 1972), and NTO (Bolotina et
al., 2003), observed experimentally, we expect that the large vibrational contribution to
the volume is a common feature of all energetic molecular crystals. This is in contrast to
the most nonmolecular crystals (Li et al., 2007; Mounet and Marzari, 2005; Pavone et al.,
1993; Sun et al., 2008; Wentzcovitch et al., 2010; Wu and Wentzcovitch, 2007; Wu et al.,
2008; Yu and Wentzcovitch, 2006), where the vibrational contribution to the volume is
only 1~2%. Consequently, the common practice of evaluating the exchange-correlation
functional by comparing the static DFT calculation results with room temperature ex-
perimental data is problematic for molecular crystals like the energetic materials. The
LDA functional is usually not preferred, because it significantly underestimates the vol-
ume of most molecular crystals with static calculation. However, when the vibrational
effects are included, the discrepancy between the volume predicted by LDA and the ex-
perimental value is considerably reduced. For TATB, the discrepancy between LDA and
the experimental volume decreases from —9.6% to —4.6% when vibrational effects are
included (see Table 1). Therefore, contrary to the common belief, we find that LDA is
a good exchange-correlation functional for energetic molecular crystals like TATB and
HMX. The equilibrium volume from GGA-vdW increases about 2.5% when phonon
effects are included, which is slightly smaller than previous works (Landerville et al.,
2010).

The equation of state and bulk modulus of TATB at 300 K calculated with LDA,
GGA, and GGA-vdW functionals are compared with experimental data in Fig. 4. Over-
estimation of the volume by GGA decreases with the pressure. The vdW correction
reduces the volume overestimation by GGA (by 32% at 0 GPa and 4% at 10 GPa), and
the resulting equation of state with the vdW correction agrees well with the experimen-
tal data. This indicates that the bulk modulus with the vdW correction is quite accurate,
which is confirmed by the good agreement between the calculated result and the exper-
imental data (Olinger and Cady, 1976; Stevens et al., 2008) at 0 GPa; see Table 4. As
shown in Fig. 4(b), the bulk modulus from GGA is much smaller than the experimental
data even at high pressures, and the bulk modulus from LDA is almost identical to that
from GGA+vdW. This means that the LDA accurately predicts the bulk modulus in the
entire pressure range. Thus the error in volume by the LDA calculation is invariant with
the pressure. The error in volume from the LDA is 4.6% at 0 GPa (see Table 1). By
multiplying the LDA volume by a constant factor of 1.048, we get an equation of state
that agrees well with the experimental data in the entire pressure range. This simple
recipe for obtaining an accurate equation of state has been shown to wgrkHivrx
as well, where we obtain a highly accurate equation of stafieldMX by multiplying
the volume from LDA by a constant factor of 1.06. (The LDA error in the volume at
ambient condition is 6% fop-HMX.) We expect that this is also true for other energetic
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FIG. 4: Pressure dependence of (a) volume and (b) isothermal bulk modulus. Results
from the LDA, GGA, and GGA-vdW calculations are compared with the experimental
data by Kolb and Rizzo (1979) (solid squares) and Stevens et al. (2008) (open circles).

molecular crystals such as RDX, PETN, and NTO. Thus, an accurate equation of state for
an energetic molecular crystal at broad temperature and pressure range can be obtained
by multiplying the volume calculated within the LDA by a constant factor€fror),

where theerror is the relative volume difference between the LDA and experimental
results at ambient condition. In contrast, the equation of state of energetic molecular
crystals from the GGA-vdW method can only apply to the narrow temperature around
room temperature because of its significant underestimation of thermal expansion.

As shown in Fig. 5, the LDA also reproduces the experimental heat capacity at
constant pressur€p of TATB very well (Baytos, 1979), as does GGA. However, the
vdW correction largely underestimat€s. Overall, the GGA is good at describing the
thermal expansiorx and Cp, but fails to describe the isothermal bulk modulkis:
and the equilibrium volumé’. On the other hand, GGAvdW is good at describing
Kr andV, but fails for&c andCp. The LDA accurately describes all thermodynamic
properties—Kr, Cp, a, V—with a slight underestimation df ~ 5%), which can be
corrected easily by multiplying with a constant factor as mentioned above. Since the
thermal Giineisen parametsy;, is related to these properties through the relation

\Volume 14, Number 6, 2015



538 Wu et al.

TABLE 4: Thermodynamic properties of TATB crystal at ambient condition, where
is the thermal expansiot/p andC, are the heat capacities at constant pressure and
constant volume, respectively;, andV are the thermal Gmeisen parameter and the

equilibrium volume, and{r and K/ are the isothermal bulk modulus and its pressure
derivative

0.8 CP CV v y KT K!
(10-3/K) | (I/mol/K ~1)| (I/mol/K ~1)| Tt | (A3) (GPa) T
20.68 276.60 257.32 |1.20 422.3 11.8 12.7 LDA
43.40 274.35 260.44 |0.41591.58| 1.38 12.2 GGA
5.22 259.92 289.52 |0.35/ 442.88| 12.85 12.9 G\/%Cj
13.6 12.4
30.2 280 69 442.9 Stevens etStevens et
. Olinger| al. (2008)| al. (2008) :
Kolb and| Pastine and Experi-
. and 16.7 5.7
Rizzo Bernecke Cad Olinaer | Olinaer ment
(1979) |  (1974) y 9 g

(1976) | and Cadyl and Cady
(1976) (1976)

() 400 e (b) 35 e
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FIG. 5: (a) Heat capacity and (b) thermal iBrisen parameter at 0 GPa. Results from
the LDA, GGA, and GGA-vdW calculations are compared with the experimental data
by Pastine and Bernecke (1974).

. OCVKT
Yih = Cv 5)

whereCy is the heat capacity at constant volumg, estimated with the LDA should be
reasonable as well. As shown in Fig. 5, the GGA giygsmuch smaller than the LDA
value, and the vdW correction only slightly changes the GGA value. Whyrom the
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GGA is smaller than from the LDA is understood as follows;, is a weighted aver-

age of the mode Gineisen parameté&r;, and at low temperatures, low-frequency modes
provide dominant contributions tg;,. As listed in Tables 2 and 3, for low-frequency
modes calculated with the GGA are significantly smaller than those obtained from the
LDA, which makes the GGA estimate ¢f;, very small. Though the GGA considerably
underestimate§;, the GGA can still describex well, because it also underestimates

V K1 at the same time to cancel out this errdt;{is only about a tenth of the experi-
mental value; see Tables 1 and 4.) The vdW correction improveés dramatically but
changegy; only slightly. As a result, the vdW correction worsens thealculated with

the GGA. In order to describe thermodynamic properties correctly, the vdW correction
must increase; significantly in the GGA calculation. Note that all dispersion coeffi-
cients in the empirical vdW method adopted here are fixed independent of the electron
density distribution. In reality, the local electron density varies from atom to atom, and
this should affect dispersion coefficients. Although this effect may change the phonon
frequency only slightly, it may cause a dramatic chang®;in.e., the volume depen-
dence of the phonon frequency. Some vdW methods (Dion et al., 2004; Tkatchenko and
Scheffler, 2009) are being developed to incorporate this effect, which would provide
better estimates of all thermodynamic properties.

4. CONCLUSION

We have investigated the effect of the exchange-correlation functional on the vibrational
and thermodynamic properties of TATB molecular crystal. Our main finding is that the
LDA is a good exchange-correlation functional for predicting these properties. The same
conclusion was drawn previously fBrHMX (Matsui et al., 2012). Previous works also
indicated that LDA is much better than GGA for graphite and the adsorption of adenine
on graphite (Hasegawa and Nishidate, 2004; Ortmann et al., 2005). We thus expect that
this is likely to be a common feature among other energetic materials or even among
broader molecular crystals.

The GGA describes the thermal expansion coefficieot TATB and 3-HMX (Mat-
sui et al., 2012) quite well, which is remarkable given the fact that the GGA dramatically
underestimates their bulk mod{ir. Our phonon calculations reveal that this is due to a
cancellation of errors, i.e., the GGA also underestimates the madtge{Sen parameters
¥4, resulting in a small thermal @neisen parameter;;,. The underestimations i,
and K cancel each other, and thus the GGA predictpite well. The empirical vdW
correction resolves the underestimationfof by the GGA but only slightly increases
Yn, Making « from the GGA+vdW too small. When compared with the GGA and
GGA+vdW, the LDA satisfactorily describes all thermodynamic properties, including
x, KT, CP, andyth.

Because molecular crystals like TATB agdHMX (Matsui et al., 2012) have sim-
ilar y;;, and much smallei; compared with other types of crystats,of molecular
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crystals are usually several times larger than that of nonmolecular crystals. Accordingly,
the volume of a molecular crystal changes significantly with temperature. Therefore, for
molecular crystals, it is essential to include phonon contributions to the volume when
evaluating the quality of the exchange-correlation functional. The GGA calculations,
which already overestimate the volume of TATB by 27% in static calculations, become
worse after including phonon contributions. In contrast, the LDA results become much
better after including phonon contributions, with the volume deviation from the experi-
mental value of only 4.6% at room temperature. Furthermore, the error in volume from
the LDA does not change with pressure, since the LDA accurately predicts the bulk
modulus of TATB over a wide range of pressure. Consequently, we can simply obtain a
highly accurate equation of state of TATB from the LDA calculations.
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