
 

 

Performance Modeling, Analysis, and Optimization 
of Cell-List Based Molecular Dynamics 

 
Manaschai Kunaseth1, Rajiv K. Kalia1, Aiichiro Nakano1, Priya Vashishta1 

1Collaboratory for Advanced Computing and Simulations (CACS) 
Department of Computer Science, Department of Physics, Department of Materials Science 

University of Southern California, Los Angeles, CA 90089-0242, USA 
(kunaseth, rkalia, anakano, priyav)@usc.edu 

 
Abstract - We have developed a performance 
prediction model for non-bonded interaction 
computations in molecular dynamics simulations, 
thereby predicting the optimal cell dimension in a 
linked-list cell method. The model expresses 
computation time in terms of the number and unit 
computation time of key operations. The model 
accurately estimates the number of operations during 
the simulations with the maximum standard error of 
10.6% compared with actual measurements. Then, 
the unit computation times of the operations are 
obtained by bisquare regression. Analysis of this 
model reveals that the optimal cell dimension to 
minimize the computation time is determined by a 
trade-off between decreasing search space and 
increasing linked-list cell access for smaller cells. 
The model predicts the optimal cell dimension 
correctly for 80% of all tested cases, resulting in an 
average speedup of 10% and 52% for the cutoff 
radius of interaction, 6.6 and 10.0 Å, respectively. 
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1. Introduction 
 

Molecular dynamics (MD) simulation is widely 
used to study material properties at the atomistic 
level. Large-scale MD simulations involving 
multibillion atoms are beginning to address broad 
problems [1-5], but increasingly large computing 
power is needed to encompass even larger 
spatiotemporal scales [6]. One of the widely used 
method for improving the performance and 
scalability of such large-scale MD simulations is the 
linked-list cell method, which employs a divide-and-
conquer strategy to reduce the search space for 
atomic pairs within the cutoff radius Rc of the 
interatomic interaction [5, 7-9].  

The conventional cell decomposition method 
uses cubic cell geometry with the dimension ~ Rc. 
However, this incurs considerable amount of 
unnecessary pair evaluations due to the excessive cell 
dimension. A commonly used method to decrease the 
redundant calculations is reducing the cell dimension, 
see e.g. Mattson et al. [7]. In particular, Yao et al. 
stated that the cell dimension of Rc/2 usually gives 
the best performance [8]. Our own experience, 
however, indicates that the optimal cell dimension 
varies considerably for different parameters such as 
Rc and the number of atoms. It is thus of great interest 
to systematically study and identify the factors that 
determine the optimal cell dimension. 

To address this problem, we carry out a 
theoretical analysis to estimate the amount of non-
bonded interaction computations, which dominate the 
computational time. Then, the platform-dependent 
computational cost associated with each key 
operation is determined by regression. Finally, we 
use the model to predict the performance as a 
function of the cell dimension, thus obtain the 
optimal cell dimension to minimize the computation 
time. 

This paper is organized as follows. Section 2 
presents the linked-list cell MD and reduced linked-
list cell method, to which the proposed performance 
model is applied. Section 3 describes the theoretical 
analysis of simulation parameters related to the cell 
dimension selection. Section 4 presents the 
verification of the performance model including the 
fitting procedure of each estimated parameters. 
Section 5 evaluates the model against measured 
computation times. Conclusions are drawn in section 
6. 
 
2. Linked-list Cell Based Molecular 

Dynamics 
 

Molecular dynamics simulation follows the 
phase-space trajectories of an N-atom system, where 



 

force fields describing the atomic force laws between 
atoms are spatial derivatives of a potential energy 
function E(rN) (rN = {r1, r2, ..., rN} is the positions of 
all atoms). Positions and velocities of all atoms are 
updated at each MD step by numerically integrating 
coupled ordinary differential equations. The 
dominant computation of MD simulation is the 
evaluation of E(rN), which consists of two-body 
E2(ri,rj) and three-body E3(ri,rj,rk) terms in the 
program considered here [5]. 

 

   
Figure 1: 2D schematic of the linked-list cell 
method. (a) Illustration of conventional 
linked-list cell method with cell dimension Rs 
 ≥  Rc. (b) 2D schematic of the reduced 
linked-list cell method. Atoms in the shaded 
region will be excluded from the force 
computation of center atom i. Only forces 
exerted by atoms within the cutoff radius 
(represented by a two-headed arrow) are 
computed.  

 
Figure 1(a) shows a schematic of the 

computational kernel of MD, which employs a 
linked-list cell method to compute interatomic 
interactions in O(N) time. Periodic boundary 
condition is applied to the system in three Cartesian 
dimensions. Here, a simulation domain is divided 
into small rectangular cells, and the linked-list data 
structure is used to organize atomic data (e.g. 
coordinates, velocities and atom type) in each cell. 
By traversing the linked list, one retrieves the 
information of all atoms belonging to a cell, and 
thereby computes interatomic interactions. Thus, the 
cutoff radius Rc of the interatomic interaction usually 
determines the dimensions of the cells. 

In order to explain the computational procedures 
in the linked-list cell method, let us define S, which is 
a set of all atomic pairs, (i, j), within the nearest-
neighbor cells. The first phase of the computation, i.e. 
pair search, constructs a subset, S0, of pairs (i, j) 
whose distance rij satisfies rij ≤ Rc. Subsequently, 
second phase computes the forces between all atom 
pairs within S0. Figure 2 shows the pseudocode for 
pair search and force computation. 

 

Phase 1: Pair search 

! 

S
0

=" 
for 

! 

"(i, j) # S  do 
if 

! 

rij " Rc  do 

! 

S0 = S0 " (i, j)  
end 

end 

 

 

Phase 2: Force computation 
for 

! 

"(i, j) # S0  do 
compute interaction force 

  

! 

r 
f ij (

r 
r ij )  

end 

 

Figure 2: Force computation algorithm 
 

The reduced linked-list cell method attempts to 
reduce the search space S by decreasing the 
dimension Rs of the linked-list cell. To illustrate this, 
Fig. 1(b) shows the situation where Rs is reduced by 
half. The atoms in the shaded region are at least one 
cutoff distance away from the center atom i such that 
it can be safely excluded. Hence, less number of pairs 
needs to be evaluated, potentially resulting in the 
performance increase. However, this performance 
gain could be offset by the increased number of 
linked-list cells that need to be scanned (e.g., from 9 
to 25 cells in the 2D example) and the associated 
computational overhead for processing the increased 
number of linked lists.  

The MD program used in this paper is 
parallelized based on spatial decomposition and 
message passing [5]. However, the focus of this 
paper is performance optimization within each 
compute node, and thus the number of atoms N 
hereafter denotes the number of atoms per node.  

 
 3. Performance Analysis of Non-

Bonded Interactions 
 

Computing non-bonded interactions usually 
consumes the largest portion of time in MD 
simulation [4]. In our performance model, we assume 
that the computational cost consists of three terms: (1) 
pair search where the number of search operations Ps 
= |S|, i.e. the cardinality of set S (phase 1 in Fig. 2); (2) 
force computation for which the number of force 
computation operations Pc = |S0| (phase 2 in Fig. 2); 
and (3) linked-list cells access overhead—Pl. 
Therefore, the non-bonded computation time in one 
MD step—T, is  

 

! 

T =T
s
P
s
+T

c
P
c

+T
m
P
l
, (1) 

where Ts, Tc, and Tm are the operation cost per Ps, Pc, 
and Pl, respectively. 



 

Generally, the memory access cost (the third 
term in Eq. (1)) in the conventional cell 
decomposition method is ignored when compared to 
the pair-search and force-computation costs. 
However, in the reduced linked-list cell method, this 
overhead often becomes dominant, as we will see in 
the measurements in section 4. 

In section 3.1, we derive Ps, Pc, and Pl for the 
conventional cell-decomposition method, while the 
extension of the model to the reduced cell method is 
derived in section 3.2. The operation costs Ts, Tc, and 
Tm are obtained from regression described in section 
4. 

3.1  Non-bonded interaction model of 
the conventional linked-list cell 
method 

3.1.1 Pair search 

The search space for non-bonded force 
computations is defined as the number of pairs that 
need to be evaluated in phase 1 of Fig. 2.. For N 
atoms, the search space of an all-pair method is O(N2). 
In this section, we derive the approximation of the 
O(N) search space in the linked-list cell method. 

For the uniform cell decomposition method with 
cubic cell dimension for all cells, the volume of each 
cell is 
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V
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3 , (2) 

where Rs is the dimension of the linked-list cell such 
that 

! 

R
s
" R

c
. If the number density of atoms in the 

system is ρ atom/Å3, the average number of atoms in 
one linked-list cell is 
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The number of possible non-bonded pairs between 
atoms in two cells is then 
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(4) 

Let Cijk be a linked-list cell with cell indices i, j, 
and k in the x, y, and z directions, respectively. To 
compute forces exerted to all atoms in Cijk, all atom-
pair combinations between Cijk and its nearest 
neighbor cells C′i′ j′k′ need to be evaluated, where 

 

! 

Sneighbor (Cijk ) = { " C " i " j " k (i #1$ " i $ i +1)

%( j #1$ " j $ j +1)% (k #1$ " k $ k +1)}
 (5) 

is the set of neighbor cells. Since the conventional 
cell decomposition method evaluates all atomic pairs 
between Cijk and its 26+1 neighbor cells (including 

itself), the number of pairs to be evaluated per one 
linked-list cell is 

 

! 

Ps C( ) =
1

2
"2Rs

6
Nneighbor , (6) 

where Nneighbor = |Sneighbor| = 27. Let Lx, Ly, and Lz be 
the number of cells in the x, y and z directions, 
respectively, then the total number of atom pairs to 
be evaluated in one MD step is 

 

! 

Ps = Ps Cijk( )
k=1

Lz
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j=1

Ly

"
i=1

Lx
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6
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(7) 

 
3.1.2 Force computation 

After the interaction pairs have been evaluated, 
only the pairs that satisfy the evaluation criterion (i.e., 
rij ≤ Rc) undergo force computation. The number of 
force computations can be estimated as follows. First, 
we count the number of atoms that are located inside 
the sphere with radius Rc around each atom. The 
volume of such sphere is 

 

! 

Vfc =
4

3
"Rc

3 , (8) 

and the number of atoms that reside within Vfc is 

 

! 

N fc =
4

3
"#Rc

3 . (9) 

Let N denote the number of atoms in the system. 
From Eq. (3), N can be expressed as 

 

! 

N = "Rs
3
LxLyLz . (10) 

Combining Eqs. (9) and (10), the number of force 
computation operations—Pc is  

 

! 

Pc = N fcN

=
4

3
"#2Rs

3
Rc

3
LxLyLz

. 
 
 

(11) 

The number of pair-force computations in Eq. (11) 
can be halved by applying Newton’s 3rd law (i.e., the 
forces acting on a pair of atoms are equal and in the 
opposite directions) such that  

 

! 

Pc =
2

3
"#2Rs

3
Rc

3
LxLyLz . (12) 

 
3.1.3 Linked-list cell access 

Linked-list cell access cost refers to the overhead 
introduced by the cell decomposition scheme. To 
compute the forces on atoms in cell C, Nneighbor cells 



 

need to be traversed. Therefore, the number of 
linked-list cell accesses is 

 

! 

Pl = LxLyLzNneighbor . (13) 

Combining Eqs. (7), (12) and (13), the prediction 
model for non-bonded pair computation is given by 
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In the next subsection, we derive a 
corresponding model for the reduced cell method to 
be used to obtain the optimal cell dimension. 

3.2 Non-bonded interaction model of 
the reduced linked-list cell method 

3.2.1 Derivation  

In this subsection, we derive the number of 
searched pairs Ps′, that of pair-force computations Pc′, 
and that of linked-list accesses Pl′, when the cell 
dimension Rs is reduced to 
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R
s
" =

R
s

µ
, (15) 

where µ ∈ N is a cell dimension reduction factor. The 
cell dimension reduction also modifies the number of 
linked-list cells such that 

 

! 

Lx
" = µLx

Ly
" = µLy

Lz
" = µLz

. (16) 

In the reduced cell method, the 1st-nearest neighbor 
cells are not sufficient for interaction evaluations, and 
instead up to the µth-nearest neighbor cells need to be 
evaluated. Therefore, Nneighbor can be calculated as 
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Nneighbor = 2µ +1( )
3 . (17) 

Substituting Rs′, Lx′, Ly′, Lz′, and Nneighbor to Eqs. 
(7), (12), and (13), respectively, yield 
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"Ly
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= µ 3
2µ +1( )

3
LxLyLz

. (20) 

Equation (19) indicates that Pc′ is independent of the 
reduction factor µ. This is consistent with the 
requirement that the choice of cell dimension should 
not affect the simulation results as noted by Heinz et 
al. [10]. 
 

3.2.2 Asymptotic analysis of the number of key 
operations  

In this section, we analyze the relation of the 
reduction factor µ to Ps′, Pc′, and Pl′. This can be 
done by the expansion of Eqs. (18) and (20) in the 
power of µ: 
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µ#3 + 3µ#2 + 6µ#1 + 4
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6
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Pl
" = 8µ 6 +12µ 5 + 6µ 4 + µ 3( )LxLyLz , (22) 

while Pc′ is independent of µ. Equations (21) and (22) 
provide asymptotic behaviors of Ps′ and Pl′ with 
respect to µ as summarized in Table 1. (The constant 
term of Ps′, which is irrelevant for the determination 
of optimal µ, is omitted in Table 1.) Since Ps′ and Pl′ 
are descending and ascending functions of µ, 
respectively, the optimal µ value that minimizes the 
computation time is determined by their trade-off. 
The asymptotic analysis reveals that the increase of 
the number of linked-list cell accesses Pl′ with µ is 
significantly larger than the reduction of search space 
Ps′, while Pc′ is not affected by µ. This implies that 
asymptotically, the overhead cost from linked-list 
access overwhelms the benefit due to the reduced the 
search space for large µ. This agrees with finding by 
Mattson et al. [7] and Yao et al. [8] such that the 
computation time is minimal when µ is small. 

From Eq. (1), the costs of pair search Ts and that 
of linked-list access Tm are essential parameters to 
quantify the trade-off between Ps and Pl, so that the 
optimal value of µ can be determined as described in 
section 4. 
 



 

Table 1: Asymptotic complexity of parameter Ps′, Pc′, 
and Pl′ over µ. 
 
Operation count Scaling with reduction factor µ 

Ps′ 

! 

O µ"3( )  

Pc′ 

! 

O 1( )  

Pl′ 

! 

O µ 6( )  

 
4. Model Verification 
 

As derived in section 3, the computation time for 
non-bonded interactions in the reduced linked-list 
cell method is given by 
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In section 4.1, we validate the accuracy of the 
operation-counts models—Ps′, Pc′, and Pl′—by 
comparing them with measured values. In section 4.2, 
we fit the Ps′, Pc′, and Pl′ derived from the estimation, 
Eq. (23), to obtain the operation costs—Ts, Tc, and Tm. 
 
4.1 Validation of the operation counts 

model 
MD simulations of silica at temperature 300 K 

involving up to 192,000 atoms are performed on an 
Intel Core-i7 2.66 GHz machine, using the cell 
reduction factor µ ranging from 1 to 4. The cutoff 
radius Rc of this dataset is set to 5.5 Å with atom 
density ρ = 0.0654 atom/Å 3, and the linked-list cell 
size Rs = 5.728 Å. 

Under this condition, the actual values of Ps′, Pc′, 
and Pl′ measured during the simulations are 
compared with those obtained from the model; see 
Table 2. The relative error of Ps′ and Pl′ is less than 
4% in all cases, confirming the applicability of our 
model for these parameters. For Pc′, the relative error 
is ~ 10% for the largest number of atoms (N = 
192,000), while it is ~ 8% for the smallest system (N 
= 1,536). Nevertheless, the maximum error of 10% is 
acceptable for the subsequent analysis, especially in 
the light of the highly dynamic nature of MD 
simulations. 
 

Table 2: Accuracy of the operation counts model. 
 

Relative error (%) Number 
of 

atoms 

Reduction 
factor, µ Ps′ Pc′ Pl′ 

1 1.67  8.01  3.60  
2 1.31  8.01  0.70  
3 0.96  8.01  0.19  

1,536 

4 0.95  8.01  0.04  
1 0.79  -0.51  3.50  
2 0.76  -0.51  0.60  
3 0.49  -0.51  0.09  

12,288 

4 0.39  -0.51  -0.06  
1 -0.24  -2.28  2.68  
2 -0.21  -2.28  -0.20  
3 -0.40  -2.28  -0.70  

41,472 

4 -0.31  -2.28  -0.85  
1 -1.43  -3.29  1.67  
2 -1.35  -3.29  -1.18  
3 -1.42  -3.29  -1.67  

98,304 

4 -1.59  -3.29  -1.83  
1 -3.50 -10.59 -0.28 
2 -3.29 -10.59 -3.08 
3 -3.39 -10.59 -3.57 

192,000 

4 -3.38 -10.59 -3.71 
 
4.2 Parameter Fitting 

In section 4.1, we confirm that Eq. (23) 
accurately approximates the operation counts. In this 
section, we use the prediction from the model and the 
running time from the execution of actual MD 
simulation to find the cost parameters Ts, Tc, and Tm. 
Here, we need to use more datasets in order to get 
better statistics for the fitting. Since Rc is one of the 
most important variables, we here concentrate on the 
effect of Rc on the performance. 

We run two additional sets of MD simulations 
using the same setting as in section 4.1 except for Rc, 
which is set here to 6.6 and 10 Å. Using the measured 
timings, we perform least square regression to obtain 
Ts, Tc, and Tm from Eq. (23). However, the results 
obtained from the least square regression show very 
large error up to 93% for estimated Tc; see Table 3. 
This may be explained by the two orders-of-
magnitude difference between the largest and 
smallest dataset sizes (1,536 and 192,000 atoms), 
which causes the fitting residuals of larger datasets to 
dominate the significance of smaller datasets. To 
alleviate this artifact, a more robust regression 
algorithms, Huber regression and bisquare-weighted 
regression, are used instead of the least square 



 

regression [11, 12]. Table 3 shows that the estimated 
operation costs from Huber regression have smaller 
standard errors (at most 40.8%), while those from 
bisquare-weighted regression have the least errors (at 
most 22.5%). Therefore, we use the estimated costs 
from bisquare-weighted regression to predict the 
performance and thereby obtain the optimal reduction 
factor µ in the next section. 
 
Table 3: Estimated operation costs from various 
regression algorithms. 
 
Regression 
algorithm 

Operation 
cost 

Estimated 
cost (ns) 

Standard 
error (%) 

Least square Ts 9.76 40.2 
 Tc 34.83 93.1 
 Tm 10.44 7.6 

Bisquare Ts 6.48 22.2 
c = 1.865 Tc 52.89 22.5 

 Tm 11.80 2.5 
Huber Ts 10.77 14.9 

c = 1.345 Tc 32.56 40.8 
 Tm 10.81 3.0 

 
5. Performance Optimization 

Results 

Here, we use the estimated operations counts and 
costs in the previous section to predict the 
performance of the simulation when the cell size is 
reduced. The optimal reduction factor µ* is then 
determined as the one that minimizes the predicted 
computation time: 

 

! 

µ* = argmin T µ( )( ) . (24) 

To study the computation time as a function of µ 
from the prediction, we compare the predicted and 
measured performances of the system with Rc = 5.5, 
6.6, 10.0 Å, with the number of atoms ranging from 
1,536, 12,288, 41,472, 98,304, to 192,000. Figure 3 
shows that the prediction captures the essential 
behavior of the non-bonded computation time in the 
actual simulations as a function of µ. This result 
agrees with the asymptotic characteristics of µ in 
Table 1, where the linked-list cell access cost 
dominates for larger µ. 

Table 4 compares µ* obtained from the 
prediction, Eq. (23), with those obtained from actual 
measurements. The µ* for Rc = 5.5 Å from actual 
simulation dataset are all 1, similar to the predicted 
values. Namely, reducing the cell dimension does not 
improve the performance in this case. On the other 
hand, the predicted µ* of the system with Rc = 6.6 

and 10.0 Å is 2 in almost all cases with the average 
speedup of 1.10 and 1.52, respectively. This result 
indicates that the reduction of the cell dimension 
becomes more beneficial for larger Rc. In such cases, 
the pair search space is larger and the associated 
search cost Ps′ becomes more important relative to 
the list-processing overhead Pl′. Figure 4 shows the 
speedup achieved from our optimization compared to 
the actual optimal speedup. 

 

 
Figure 3: The running time from the 
prediction and the measurement for Rc = 10 
Å. The numerals are the number of atoms. 
 
Table 4: The predicted versus measured values of the 
optimal µ with their corresponding speedup 
compared to the case of no cell dimension reduction. 
 

µ* Speedup Rc 
(Å) N 

Prediction Actual Prediction Actual 
1,536 1 1 1.00 1.00 
12,288 1 1 1.00 1.00 
41,472 1 1 1.00 1.00 
98,304 1 1 1.00 1.00 

5.5 

192,000 1 1 1.00 1.00 
1,536 2 2 1.12 1.12 
12,288 2 2 1.28 1.28 
41,472 2 1 0.92 1.00 
98,304 2 2 1.15 1.15 

6.6 

192,000 2 2 1.02 1.02 
1,536 3 3 1.85 1.85 
12,288 3 2 1.54 1.74 
41,472 2 2 1.41 1.41 
98,304 3 2 1.54 1.70 

10.0 

192,000 2 2 1.28 1.28 
 
 



 

 
Figure 4: Comparison of speedup gained 
from predicted and actual μ* for Rc = 6.6 and 
10 Å.  
 
6. Conclusions 
 

We have developed a performance prediction 
model of non-bonded interaction computations of 
molecular dynamics simulations, which can be used 
to obtain the optimal cell dimension in the reduced 
linked-list cell algorithm. The model has been 
validated against measurement results. The model 
accurately predicts the optimal reduction factor, and 
average speedup of 1.10 and 1.52 are obtained for Rc 
= 6.6 and 10.0 Å datasets, respectively. Our analysis 
reveals that the optimal reduction factor is 
determined by a trade-off between decreasing search 
space and increasing linked-list cell access for 
smaller cells. Future research will explore the 
possibility of using the model to compare other MD 
algorithms. Other factors that affect the selection of 
the reduction factor will also be explored. This work 
was partially supported by NSF-
ITR/PetaApps/EMT/CRI, DOE-SciDAC/BES/EFRC, 
and DTRA. 
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